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ABSTRACT
Modern web browsers are required to execute many complex,
compute-intensive applications, mostly written in JavaScript.
With widespread adoption of heterogeneous processors, re-
cent JavaScript-based data-parallel programming models,
such as River Trail and WebCL, support multiple types of
processing elements including CPUs and GPUs. However,
significant performance gains are still left on the table since
the program kernel runs on only one compute device, typ-
ically selected at kernel invocation. This paper proposes a
new framework for efficient work sharing between CPU and
GPU for data-parallel JavaScript workloads. The work shar-
ing scheduler partitions the input data into smaller chunks
and dynamically dispatches them to both CPU and GPU
for concurrent execution. For four data-parallel programs,
our framework improves performance by up to 65% with a
geometric mean speedup of 33% over GPU-only execution.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming ; D.3.2 [Programming Lan-
guages]: Language Classification—JavaScript

Keywords
Web browser; JavaScript; data parallelism; GPU; work shar-
ing; scheduler; multi-core; heterogeneity

1. INTRODUCTION
JavaScript is the default programming environment for

browser-based web applications. As more and more appli-
cations are deployed on the web, the role of JavaScript has
grown from a light-weight scripting language to a general-
purpose programming framework that enables heavy-weight
web applications. Besides, as heterogeneous processors com-
prised of both CPUs and GPUs are widely adopted, JavaScript
is called upon to embrace heterogeneity as well as parallelism
in processing elements to execute a wide variety of parallel
workloads efficiently.
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Figure 1: Work sharing execution model

Recently, several parallel programming frameworks have
been proposed to accelerate data-parallel workloads, includ-
ing River Trail [6] and WebCL [2]. Although both are de-
signed for heterogeneous parallel computing, they use only
one compute device—either CPU or GPU, but not both—
when executing a kernel. This leaves hardware resources
underutilized and potential performance gains on the table.

To address this limitation, we propose a new JavaScript
framework for efficient work sharing between CPU and GPU
for data-parallel workloads. The work sharing scheduler
partitions the input data into small chunks to create tasks,
and automatically dispatches them to both CPU and GPU.
The CPU and the GPU execute tasks concurrently and pro-
duce output chunks. To efficiently merge the output chunks
from both devices, the framework supports JavaScript-level
shared memory between the two devices, hence eliminat-
ing extra copy operations. We prototype the framework
on WebKit, a popular browser engine that powers many
production-grade web browsers. The preliminary perfor-
mance results look promising with a maximum speedup of
65% and a geometric mean speedup of 33% over GPU-only
execution for four data-parallel JavaScript programs.

2. DESIGN AND IMPLEMENTATION
Figure 1 illustrates the execution model of the proposed

work sharing framework. Work sharing uses a globally shared
task queue to distribute tasks to multiple compute devices [7].
In our setup, a multi-core CPU and a GPU are two available
compute devices. Also, a task is formed by taking a fixed-
size subset of the input data, specified by a pair of array
indices pointing to the first and last elements of the subset,
as we focus on array-based data parallel workloads. Once
a task is dispatched and executed on a compute device, the
device writes the produced output chunk into the shared
buffer and signals the task scheduler to fetch a new task.
This process continues until the task queue becomes empty.
Note that, no explicit output merging process is necessary
since both devices write to the shared output buffer.
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Figure 2: Performance speedups of four programs normalized to sequential execution varying input sizes.

The parallel execution framework builds on Web Worker [4],
with which we create multiple parallel contexts in JavaScript.
For a machine with N CPU cores, the framework spawns
N+1 Web Workers: N for CPU execution and one for GPU
execution. The N Workers for CPU execute the kernel writ-
ten in JavaScript concurrently; The Worker for GPU invokes
an OpenCL version of the same kernel through WebCL bind-
ing. For communication between the task scheduler on the
main thread and the compute devices, we use JavaScript
event handlers such as postMessage and onmessage.

For efficient data communication we modify the browser
engine to support shared memory among parallel contexts.
Note that, the Web Worker API is based on the shared-
nothing model and requires explicit message passing for com-
munication between the main thread and a worker thread.
This shared memory support is particularly valuable in merg-
ing the produced output chunks from multiple compute de-
vices; otherwise, it would be necessary to copy the output
chunk back to the main thread whenever a task is finished.

The chunk size determines the granularity of a task and
is an important performance parameter. A smaller chunk
generally leads to better load balancing among compute de-
vices at the cost of higher dispatching overhead. In a non-
JavaScript setup non-uniform chunk sizes for different com-
pute devices are reported to be beneficial [7]. We assume a
uniform chunk size for both CPU and GPU and leave the
exploration of non-uniform chunk sizes for future work.

3. EVALUATION
We evaluate the proposed framework on Intel i5-3330 CPU

with 4 cores clocked at 3.0GHz with 4GB RAM and Nvidia
GeForce GT 620 GPU clocked at 1.62GHz with 1GB of
global memory. Table 1 summarizes the four data-parallel
JavaScript programs used for evaluation. The same fixed
chunk size is used for both CPU and GPU.

Program Chunk size Source
Nbody 256 Bytes WebKit-WebCL [5]

Edge Filter 64×64 Bytes River Trail [3]
Matrix Multiply 256×256 Bytes Nvidia OpenCL SDK [1]

Mandelbrot 256×256 Bytes River Trail [3]

Table 1: Benchmark programs

Figure 2 shows the program speedups normalized to se-
quential JavaScript execution with varying input sizes. CPU-
only and GPU-only refer to the speedup numbers with only
using either CPU or GPU, respectively; CPU+GPU refers to
CPU-GPU work sharing execution without shared memory,
and CPU+GPU+SharedMem with shared memory. With a

large input (i.e., enough work to do), CPU+GPU+SharedMem
eventually outperforms the other three alternatives except
for Matrix Multiply for which it performs slightly worse
than GPU-only. In general, the work sharing scheme works
well for those programs whose performance gap between
CPU-only and GPU-only is relatively small; otherwise, GPU-
only execution without the overhead of managing CPU-GPU
cooperative execution would likely perform better.

For both Nbody and Edge Filter the shared memory sup-
port results in significant performance boost. The perfor-
mance benefit is more pronounced in Nbody since it is nec-
essary to propagate (copy) the position and velocity arrays
to all compute devices every iteration. Matrix Multiply is
a very GPU-friendly program, and its performance gain by
offloading computation to CPU is relatively small. Finally,
for Mandelbrot CPU+GPU+SharedMem performs best for
large inputs. However, the difference between CPU+GPU
and CPU+GPU+SharedMem is rather small due to a low
volume of communication. Also, the speedups decrease as
input size increases since the fraction of the sequential por-
tion of the program (drawing) in execution time increases.

4. CONCLUSION
In this paper we propose a novel JavaScript parallel ex-

ecution framework that enables efficient CPU-GPU work
sharing. Our prototype of the framework built on WebKit
demonstrates promising results. In the future, we plan to
extend the framework to support OpenCL kernels on CPU
and non-uniform chunk sizes for different compute devices.
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