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Abstract—With a simple “If This Then That” syntax, IoT
frameworks such as IFTTT and Microsoft Flow allow users to
easily create custom applets integrating sensors and actuators.
Users expect appropriate actions to be taken within a certain
latency in response to sensor value changes while the sensors
usually have limited battery power. Therefore, reading the sensor
values at the right time point is crucial for the IoT frameworks
to support real-time responses of the applets while saving battery
lives of sensors. However, existing IoT frameworks periodically
read the sensor data with fixed intervals without reflecting
current sensor values and trigger conditions of applets, so the
intervals are either too long to meet the real-time constraints,
or too short wasting batteries of sensors. This work extends the
existing IFTTT syntax for users to describe real-time constraints,
and proposes the first real-time IoT framework with trigger
condition-aware flexible polling intervals, called RT-IFTTT. RT-
IFTTT analyzes current sensor values, trigger conditions and
constraints of all the applets in the framework, and dynamically
calculates the efficient polling intervals for each sensor. This
work collects real-world sensing data from 10 physical sensors
for 10 days, and shows that the RT-IFTTT framework with
the proposed scheduling algorithm executes 100 to 400 applets
according to user-defined real-time constraints with up to 64.12%
less sensor polling counts compared to the framework with the
fixed intervals.

I. INTRODUCTION

In the Internet of Things (IoT) environments, networked
sensors and actuators provide various services that assist
daily lives of users, interacting with the physical world. To
satisfy various user demands, recent IoT frameworks such as
IFTTT [1] and Microsoft Flow [2] allow users to write their
own custom service as an applet with a simple “If This Then
That” syntax. Fig. 1 illustrates an example smart home IoT
framework and its custom applets. In the example, the custom
applets describe several operational rules such as ventilating
a room if sunny, closing blinds if too bright, turning on/off
a bulb if dark/bright, and closing a window if rainy. Given
the applets, the IoT framework periodically reads current
temperature, humidity, and illuminance values from connected
sensors, and executes described actions in the applets if their
trigger conditions are true. Here, some of the applets are time
critical. For example, if the framework does not close the
window on time when it is rainy, the inside of the house
will get wet. If the applets include more time critical services
like health monitoring and disaster response, their real-time
responses become more important [3–6].

To support real-time responses of the applets, the IoT
frameworks should read sensor data at the right time point.
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Fig. 1. Example Applets: Smart Home

The response time is from when the physical event occurs to
when the actuators react. To react to the event on time, the IoT
framework should first notice the occurrence of the event from
the sensor data. However, IoT sensors generally have limited
battery power, so the sensors measure the environments only
at the scheduled time and hibernate after the measurement.
If the interval between each measurement is too long, the
IoT frameworks cannot take actions of the applets within the
real-time constraints. On the other hand, if the interval is too
short, each sensor unnecessarily wastes its battery power. As
results, to maximize battery lifetimes of the sensors while
supporting real-time responses, the IoT frameworks should
read the sensor values with an appropriate interval that reflects
real-time constraints.

However, existing IoT frameworks [1, 2, 7, 8] periodically
read the sensor data with fixed intervals regardless of real-
time constraints. Moreover, the frameworks do not provide
any interface about real-time constraints, so there is no way
for users to specify a deadline of each applet. For example, the
IFTTT syntax consists of only trigger conditions and actions
without real-time constraints, and the IFTTT framework polls
all the connected sensors every 15 minutes [1]. The IFTTT
framework provides real-time APIs that allow a sensor to
notify the framework of any change, and reduces the response
time of the applets. However, since the real-time APIs make
the sensor send notifications for every change, the sensor sends
unnecessary notifications that do not affect trigger conditions,
wasting its battery power. Publish-and-subscribe messaging



protocols [9, 10] that many IoT frameworks [2, 7, 8] adopt also
require a sensor to publish its change without considering
trigger conditions of target applets, so the sensor suffers from
the same unnecessary notification problem like the real-time
APIs of the IFTTT framework.

This work proposes RT-IFTTT, the first real-time IoT lan-
guage and its framework that uses trigger condition-aware
flexible sensor polling intervals. The RT-IFTTT language
extends the existing IFTTT syntax, and allows users to specify
real-time constraints for their applets. Its compiler analyzes
the applets and extracts their trigger conditions, actions and
deadlines. The RT-IFTTT framework consists of an applet
manager and a sensor polling scheduler. The applet manager
analyzes prerequisite relations among applets, and classifies an
applet as an inactive applet if at least one of its prerequisites
is not triggered. The sensor polling scheduler dynamically
calculates evaluation and polling intervals for each trigger
condition and related sensors, reflecting their current sensor
values and corresponding trigger conditions.

This work implements the RT-IFTTT framework and installs
10 physical sensors that consist of 2 sets of temperature,
humidity, UV Index, ambient light, and pressure sensors. The
RT-IFTTT framework collects sensing data from the sensors
for 10 days. To deeply evaluate the proposed scheduler in the
RT-IFTTT framework, this work also implements three other
schedulers including fixed and random interval schedulers, and
executes the schedulers with the collected data. The evaluation
results show that the RT-IFTTT framework with the proposed
scheduling algorithm executes 100 to 400 applets with up to
64.12% less sensor polling counts compared to the framework
with the fixed intervals.

The contributions of this paper are:
• The first real-time IoT framework with flexible polling

intervals, called RT-IFTTT
• The RT-IFTTT syntax and compiler that allow users to

write their own IoT applets with real-time constraints
• The applet manager that analyzes prerequisite relations

among trigger conditions
• The flexible polling interval model and its scheduler that

dynamically calculate efficient polling intervals for each
sensor reflecting the current sensor values and trigger
conditions.

II. MOTIVATION

While providing real-time responses is important for many
IoT services such as health monitoring, disaster response, and
home automation, existing IoT frameworks [1, 2, 7, 8] do not
effectively and efficiently support real-time execution of the
services. First, the frameworks do not provide real-time inter-
faces for users, so users cannot specify real-time constraints
for their applets. There exist some real-time interfaces like
the IFTTT real-time APIs [1], but the interfaces are about
forcing instance notification of sensing value changes, not
describing real-time constraints for their applets. As a result,
the frameworks schedule their applets without considering
their deadlines. To fully support real-time execution of the

(a) Temperature

(b) Humidity

(c) Illuminance

Fig. 2. Sensor data from indoor and outdoor thermometers, hydrometers and
lightmeters. Green and blue lines indicate indoor and outdoor sensing values
respectively. Each sensor measures the environments every second for 5 days.
April 17th is rainy.

applets, the IoT frameworks should provide an interface for
users to define their own real-time constraints for each applet.

Moreover, the frameworks [1, 2, 7, 8] collect sensor data
without reflecting the current sensor values and trigger con-
ditions of the applets. To support instant responses for the
applets, the frameworks can request the connected sensors to
notify their changes using the real-time APIs [1] and publish-
and-subscribe messaging protocols [9, 10]. However, since the
sensors do not know the trigger conditions of applets, the
sensors keep sending the sensing values whenever changed
although the changed values do not affect trigger conditions.
For example, during the night time, outdoor thermometers
keep sending their temperature changes like Fig. 2(a), but
the temperatures do not affect any trigger condition of the
applets in Fig. 1. To efficiently collect sensor data without
unnecessary data communication, either the sensors should
send their data that affect trigger conditions of the applets,
or the IoT frameworks should poll the sensors reflecting the
current sensor values and the trigger conditions. Since the
IoT sensors are generally too lightweight to manage various
trigger conditions, this work focuses on the efficient polling
scheduling of IoT frameworks. Moreover, since capturing
changes of discrete sensor values is relatively simple through
notification, this work focuses on continuous sensor values like
temperature, humidity, and illuminance.

Recent works [11–13] have proposed data acquisition
scheduling algorithms from normally-off sensors to support
real-time decision making in the IoT environments. To make
a decision with valid sensing data, the proposed algorithms
analyze structures of trigger conditions, and determine the



applet ::= IF conditions
THEN actions
WITH constraints

conditions ::= (conditions && conditions)
::= (conditions || conditions)
::= condition

condition ::= Si 4Xi

4 ::= <,≤, >,≥
actions ::= actions; action

::= action
action ::= Ai.operation()

constraints ::= Time < D
::= Time < D && MissRatio < e

Fig. 3. RT-IFTTT Syntax. Here, Xi, D and e are constants

order of sensor polling. Here, the algorithms assume that the
freshness periods of each sensor data are given as a fixed value.
However, as Fig. 2 illustrates, sensing values from different
sensors have different characteristics even though they are the
same type of sensors. For example, indoor sensors generate
more stable temperature, humidity, and illuminance data than
outdoor sensors, so indoor sensors can have longer freshness
period. Moreover, the sensing values have repeated patterns,
so predicting the range of sensor values after minutes or tens
of minutes is possible. If the current sensing value is different
enough from the trigger conditions, an IoT framework can
increase the freshness period of the data. To maximize sensor
polling intervals and minimize battery power consumption of
sensors, this work dynamically calculates the freshness period
of each sensor reflecting the sensing value history, the current
sensing value, and its related trigger conditions.

III. DESIGN OF RT-IFTTT LANGUAGE AND FRAMEWORK

To fully support real-time execution of applets while mini-
mizing battery power consumption of sensors with an appro-
priate sensor polling interval, this work proposes RT-IFTTT
that consists of the RT-IFTTT language and its framework.

A. RT-IFTTT Language

The RT-IFTTT language extends the existing IFTTT rules,
and allows users to describe their applets with real-time
constraints. Fig. 3 illustrates the overall syntax of the RT-
IFTTT language. The RT-IFTTT syntax largely consists of
three parts such as trigger conditions, actions and
real-time constraints. Like the IFTTT syntax, the trig-
ger conditions lead the actions in an applet. The
conditions can recursively consist of && or || combina-
tions of multiple conditions. Each condition consists
of a sensing value, a target value and a relational operator.
Here, since this paper focuses on finding an efficient polling
intervals of sensors that measure continuous values, to simplify
the interval finding problem, the RT-IFTTT syntax only allows
integers or real numbers for the sensing and target values.
Like the conditions, actions can consist of a series of
actions, and each action describes an operation of an
actuator.

Unlike the IFTTT syntax, RT-IFTTT has real-time
constraints in its syntax. The constraints describe

App vent ::= IF T > 25 && L > 25,000
THEN Window.open(); blind.open()
WITH Time < 300 && MissRatio < 0.05

App blind ::= IF L > 50,000
THEN blind.close()
WITH Time < 120 && MissRatio < 0.05

App day ::= IF L > 20,000
THEN bulb.off()
WITH Time < 90

App night ::= IF L < 1,500
THEN bulb.on()
WITH Time < 90 && MissRatio < 0.01

App rainy ::= IF H > 75 && L < 1,000
THEN Window.close()
WITH Time < 60 && MissRatio < 0.01

Fig. 4. RT-IFTTT Applet Examples of the Smart Home Service in Fig. 1

the deadline of the applet as D and its maximum deadline
miss ratio as e. If an applet should always meet its deadline,
users can describe the constraints without its miss ratio.
If an applet has its maximum miss ratio as e, the RT-IFTTT
framework can aggressively defer its sensor polling time,
saving battery power of connected sensors.

Fig. 4 shows example applets written in the RT-IFTTT
language for the Smart Home service in Fig. 1. In the example,
there exist three sensors such as a thermometer, a hydrometer
and a light meter, and three actuators such as a window, a blind
and a bulb. The 5 example applets execute 5 home automation
services such as ventilating a room, closing a blind, turning
on and off a bulb and closing a window if the sensing values
satisfy their trigger conditions. For example, if its temperature
and illuminance values are higher than 25 and 25,000, the
App_vent applet ventilates the room by opening its window
and blind within 300 seconds. The App_day applet defines
its constraints without a miss ratio, indicating a firm deadline.
The RT-IFTTT compiler analyzes the applets and extracts their
trigger conditions, actions and real-time constraints like the
first 4 columns of the applet manager table in Fig. 5.

B. RT-IFTTT Framework

The RT-IFTTT framework executes given RT-IFTTT applets
respecting their real-time constraints. Fig. 5 illustrates the
overall structure of the RT-IFTTT framework. The framework
consists of an applet manager, a sensor polling scheduler, a
sensor manager and an actuator manager.

Applet manager analyzes prerequisite relations among
applets and manages current states of applets. If an applet
A always triggers its action before another applet B, A is
a prerequisite of B. Since the applet cannot be triggered
before its prerequisites, if at least one of the prerequisites
is not yet triggered, the RT-IFTTT framework can exclude
the applet from the scheduling candidates, and reduce the
scheduling overheads. For the example of Fig. 5, App_night
is a prerequisite of App_rainy because of their comparison
operators and target values for L. Since App_night is
not yet triggered, the applet manager classifies App_rainy
as an inactive applet, and excludes App_rainy from the



Applet Conditions Actions Constraints Prerequisite Status

App_vent
T>25 && 
L>25,000

W.open; 
Blind.open 300, 0.05 App_day Active

App_blind L>50,000 Blind.close 120, 0.05 App_day Active

App_day L>20,000 Bulb.off 90, 0.00 Triggered

App_night L<1,500 Bulb.on 90, 0.01 Active

App_rainy
H>75 && 
L<1,000 W.close 60, 0.01 App_night Inactive

… … … … … …

Applet Manager

Sensor Current Value Next Polling

T 17 Apr. 20 21:35:00

H 62 -

L 23,000 Apr.20 21:30:00

… … …

CEI function

Sensor
Manager

RT-IFTTT Server

Actuator Manager
Actuator Action

Window Close

Blind Close

Bulb Off

… …

Sensor Polling Scheduler
Applet Conditions Next Evaluation

App_vent
T>25 &&
L>25,000

900 (21:35:00)

App_blind L>50,000 600 (21:30:00)

App_night L<1,500 3000 (22:10:00)

… … …

SPI function

Value 
Predictor

Fig. 5. Overall Structure of the RT-IFTTT Framework

scheduling candidates. Here, App_vent and App_blind
are active because their prerequisite, App_day is already
triggered.

Sensor polling scheduler dynamically calculates evalu-
ation and polling intervals for each trigger condition and
their sensors. The sensor polling scheduler consists of a
sensor value predictor, a CEI (Condition Evaluation Interval)
function, and a SPI (Sensor Polling Interval) function. The
sensor value predictor predicts the range of sensor values
after a given time period with previous sensing data, and
provides the probability of value gradients over time gradients
(pi(∆s|∆t)). Interacting with the sensor value predictor, the
CEI function calculates evaluation intervals of each trigger
condition. From the evaluation intervals of trigger conditions,
the SPI function calculates polling intervals of each sensor.
Whenever the sensor manager updates a sensing value, the
sensor polling scheduler evaluates all trigger conditions that
use the sensing value, and also invokes the CEI function to
update the evaluation intervals of trigger conditions. Then,
the sensor polling scheduler invokes the SPI function to
update polling intervals of all the sensors that are used in
the trigger conditions. Section IV will describe details about
how the sensor polling scheduler achieves efficient evaluation
and polling intervals for trigger conditions and sensors.

Sensor manager manages connectivity of sensors and their
sensing data. As Hasenfratz et al. [14] mentioned, the sensor
manager acquires sensing data with pulling. At the scheduled
polling time, the sensor manager requests sensing data from
its corresponding sensor and receives the data. The sensor
manager also keep the history of sensing data for the sensor
polling scheduler to predict sensing values.

Actuator manager manages connectivity of actuators and
sends their operations to actuators if an applet satisfies its
trigger conditions.

C. Sensor Value Prediction

Based on an observation result that the sensing values have
repeated patterns, this work designs a maximum normalized
sensor value gradient model (MNSVG model) that calculates
a probability of a maximum normalized sensor value gradient
after a given time gradient (pi(∆s|∆t)) using the history
of sensing data. In the current sensor polling scheduler im-
plementation, the CEI function uses the MNSVG model to
analyze the possible range of a sensor value after a given
time period and to calculate evaluation intervals of trigger
conditions. Here, since the CEI function uses the prediction
model as a black box, the RT-IFTTT framework can use other
sensor value prediction models [15–18] instead of the MNSVG
model.

The sensor value predictor generates a MNSVG model for
a sensor, si, in three steps. First, the predictor calculates max-
imum normalized sensor value gradients over time gradients
at a certain time point, t0, by

∆si(∆t = t− t0) = maxt0≤τ≤t
|si(τ)− si(t0)|
|si(t0)|

Second, the predictor generates a multiset, Si,∆t, that rep-
resents a distribution of maximum normalized sensor value
gradients over different time points from ts to tf for a certain
time gradient, ∆t.

Si,∆t = {∆si(∆tj = (tj + ∆t)− tj)|ts ≤ tj ≤ tf}

Finally, the predictor generates a probability function about a
maximum normalized sensor value gradient after a given time
gradient, pi(∆s|∆t).

psi(∆s|∆t) =
|{s|s = ∆s, s ∈ Si,∆t}|

|Si,∆t|
The probability function will be used for the CEI function to
analyze the possible ranges of a sensor value over different
time gradients.

IV. PROBLEM STATEMENT AND SOLUTION

The sensor polling scheduler in the RT-IFTTT framework
dynamically calculates evaluation and polling intervals for
each trigger condition and their sensors. This section for-
mally defines a problem about the goal of the sensor polling
scheduler (Section IV-A), and provides a solution with a proof
(Section IV-B).

A. Problem Statement

To support real-time execution of an applet, the RT-IFTTT
framework should execute various tasks such as polling sen-
sors, evaluating trigger conditions and taking actions before its
deadline. Figure 6(a) illustrates the tasks for a single-sensor
applet at a timeline. For an applet aj with a relative deadline
Daj , the framework polls the sensor and updates its value si at
time points tsi with flexible intervals Isi . Then, the framework
evaluates trigger conditions and takes actions at time point tAaj
if an event occurs at tEaj . Table I summarizes the notations used
in this section.



TABLE I
NOTATION FOR THE PROBLEM

Notation Description Notation Description

N The total number of sensors M The total number of active applets
Daj Relative deadline of applet aj Raj Response time of applet aj

Isi Polling interval of sensor si Iaj Evaluation interval of applet aj

tEaj
Time point when the event of aj occurs tAaj

Time point when the action for aj is taken
tsi Time point when si is polled psi(∆s|∆t) Probability of value gradients over time gradients for si
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Fig. 6. Timeline of an Event Occurrence and its Detection

For the framework to meet the deadline of the applet, its
response time Raj should be shorter than the deadline Daj .

Raj = tAaj − t
E
aj ≤ Daj

However, the framework hardly know the exact time point of
the event occurrence tEaj . Since the event did not occur at the
previous polling, the framework conservatively considers the
previous polling time point t(k)

si as the event occurrence time
point tEaj , and calculate the conservative response time RCaj by

Raj ≤ RCaj = tAaj − t
(k)
si ≤ Daj

To simplify the problem and focus on finding the efficient
sensor polling intervals, this work assumes that the time re-
quired to complete the action after sensor polling (tAaj−t

(k+1)
si )

is fixed and already reflected into the deadline. Therefore, to
support real-time execution, the framework should keep the
kth polling interval I(k)

si less than the deadline Daj , while
maximizing the other polling intervals to reduce battery power
consumption of the sensor.

RCaj ≈ I
(k)
si = t(k+1)

si − t(k)
si ≤ Daj

Since the RT-IFTTT language supports trigger conditions
with multiple sensors, an applet aj can use multiple sensing
values such as si∗ and si′ . Moreover, a sensor can be used in
multiple applets. Figure 6(b) illustrates the tasks of a multi-
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Fig. 7. Brief Process of Sensor Polling Scheduler

sensor applet at a timeline. To correctly find the occurrence
of an event, the framework should evaluate all the conditions
while all the sensing data are fresh, so the framework polls all
the sensors in an applet condition together. However, a sensor
si′ may be used in another applet, and polled at a time point
t
(k′−1)
si′ before the scheduled one t(k

′)
si′ . Then, the framework

recalculates the next polling point t(k
∗)

si∗ , t
(k′)
si′ of sensors si∗ , si′

in the applet with the updated sensor value.
Then, this work formulates a problem as follows.

Problem Statement. The problem is to find maximum polling
intervals Isi(i = 1, ..., N) for each sensor value si that satisfy
the following condition.
Condition. For every applet aj (j = 1, ...,M ), there exists
a sensor polling of a senor value si∗ that is used in aj and
satisfies

I(k)
si∗

= t(k+1)
si∗

− t(k)
si∗
≤ Daj

where t(k)
si∗ < tEaj < t

(k+1)
si∗ .

B. Algorithms

The basic principle of the algorithms in the sensor polling
scheduler is increasing sensor polling intervals if an event will
not occur with high possibility, and decreasing the intervals
when the event seems to occur soon. In other words, the
algorithms reflect the probabilities of trigger conditions in
an applet into the sensor polling intervals. For the example
applets in Fig. 4, if the current temperature is around 0◦C,
the algorithms do not poll the temperature data every several
minutes because the probability that the temperature becomes
higher than 25◦C in an hour is very low.

In the algorithms, the next polling time of a sensor value
tsi is determined by

tsi ← tnow +min(Imsi , I
a
si)

where Imsi is the next sampling interval required to keep
the sensor value prediction model valid, and Iasi is the next



Algorithm 1: Sensor Polling Scheduler
Input: A = {a1, a2, ...aM}: Set of active applets

S = {s1, s2, ...sN}: Set of sensor values
si : Updated sensor value

Output: TS = {ts1 , ts2 , ..., tsN }: Set of next polling time
1 I ← φ ;
2 foreach aj ∈ A do
3 if si ∈ aj .Conditions then
4 Iaj ← CEI (aj .Conditions, aj .D, aj .e);
5 I ← I ∪ {Iaj};
6 end
7 end
8 foreach si ∈ S do
9 Iasi ← SPI (si, A, I);

10 if Iasi == Intmax then
11 continue;
12 end
13 tsi ← tnow + min(Imsi , I

a
si);

14 end

evaluation interval of an applet that uses the sensor value si.
Each sensor value si has its maximal sampling interval Imsi

to build its sensor value prediction model. This work assume
that a fixed value is given for Imsi , and the value is much larger
than relative deadlines of the applets. That is,

Dj � Imsi

for every applet aj(j = 1, ..,M).
Algorithm 1 describes the overall algorithm of the sensor

polling scheduler that finds the efficient sensor polling inter-
vals. Whenever a sensor value si is newly updated, the RT-
IFTTT framework invokes the algorithm because the updated
value may affect the probabilities of applet conditions and
their intervals. The algorithm largely consists of two steps.
First, the algorithm checks if an applet aj uses the updated
sensor value si. If so, the algorithm calls the CEI function that
calculates the evaluation interval of the applet aj reflecting the
updated value (Algorithm 2). Second, the algorithm calls the
SPI function that reflects the updated evaluation intervals to
all the sensors (Algorithm 3). If the sensor is not used in any
updated applet, the algorithm does not update its next polling
schedule. Fig. 7 briefly illustrates the cyclic process of the
sensor polling scheduler.

Since a trigger condition of an applet can be a combination
of sub-conditions with logical operators such as && and ||, the
algorithm should consider logical structures of each condition.
To manage the trigger conditions in a systematic way, the
RT-IFTTT framework introduces a new data structure, called
condition tree. A condition tree C is a binary representation
of a condition of an applet, defined as

C = Internal(Cleft, lop, Cright)

| Leaf(s, cop, x)

where lop ∈ {&&, ||} and cop ∈ {<,≤,≥, >}. For example,

Algorithm 2: CEI(C,D,e)
Input: C: A condition tree

D: Relative deadline
e: A miss ratio

Output: IC : Evaluation interval for the condition C
1 if C == Leaf(si, cop, xi) then
2 Find a maximum ∆t∗ that satisfies

psi(∆s <
|xi−si|
|si| | ∆t∗) ≥ 1− e;

3 if ∆t∗ is not found || ∆t∗ < D then
4 IC ← D;
5 else
6 IC ← ∆t∗;
7 end
8 else if C == Internal(Cleft, lop, Cright) then
9 if lop == && then

10 if eval(Cleft) == true then
11 IC ← CEI (Cright,D,e);
12 else if eval(Cright) == true then
13 IC ← CEI (Cleft,D,e);
14 else
15 IC ← max (CEI (Cleft,D,e),
16 CEI (Cright,D,e));
17 end
18 else if lop == || then
19 IC ← min (CEI (Cleft,D,1−

√
1− e),

20 CEI (Cright,D,1−
√

1− e));
21 end
22 end
23 return IC ;

a condition tree for App_vent in Figure 4 is defined as

CApp vent = Internal(Leaf(T,>, 25),&&,

Leaf(L,>, 25000)).

Algorithm 2 describes the CEI function that recursively
traverses a condition tree of an applet, and calculates an
appropriate interval for the condition tree. The condition C
is either a leaf node or an internal node. If C is a leaf
node, the condition C has only one sensor value si and its
comparison target value xi. If the difference between si and xi
is large enough, the CEI function can increase its evaluation
interval until the predicted sensor value changes more than
the difference. Thus, the CEI function finds the maximum
evaluation interval that satisfies psi(∆s < |xi−si|

|si| | ∆t∗)

larger than 1 − e. Here, psi(∆s < |xi−si|
|si| | ∆t∗) means

the probability that si does not reach xi after a given time
interval ∆t∗. The probability should be larger than user-
defined success ratio (1− e). If the CEI function cannot find
any appropriate interval or the interval is smaller than the
relative deadline D, the function just returns the deadline D,
which is the worst-case interval.

If C is an internal node, CEI first recursively calculates
the condition evaluation intervals of both subtrees (Cleft and



Cright). Then, if two subtrees are linked by && operator,
the CEI function returns the maximum interval between two
intervals because the condition C will be true only when both
subtrees are true. Here, if one of the sub-condition is already
true, the CEI function uses the interval of the other sub-
condition. If two sub-conditions are true , that is, C is true,
then the applet is already triggered and the applet manager
excludes this applet from the sensor polling scheduler. If two
subtrees are linked with || operator, it takes the minimum
interval between the two intervals that CEI calculates with
an adjusted miss ratio (1−

√
1− e), because the condition C

will be true if at least one of the subtrees is true.

Algorithm 3: SPI(si, A, I)
Input: si: Target sensor

A = {a1, a2, ...aM}: Set of active applets
I = {..., Iaj , ...}: Set of updated evaluation
intervals

Output: Iasi :The next polling interval of si
1 Iasi ← Intmax;
2 foreach Iaj ∈ I do
3 if si ∈ aj .Conditions then
4 Iasi ← min (Iasi , Iaj );
5 end
6 end
7 return Iasi ;

Algorithm 3 describes the SPI function that finds the
minimum polling interval of a sensor si among its relevant
evaluation intervals. Since the evaluation intervals are the
maximum intervals that each applet can meet its constraints,
the polling intervals of the related sensors cannot exceed
the evaluation intervals. Thus, the SPI function finds the
minimum interval for a senor among the maximum evaluation
intervals of its relevant applets. Here, if a sensor si is not used
in any of applets with updated evaluation intervals, the SPI
function sets the polling interval of si as Intmax, so the sensor
polling scheduler leaves its next polling schedule unchanged.

Theorem 1 (Deadline Guarantee). Given a misspeculation
ratio e, the algorithm finds Isi(i = 1, ..., N) that meets the
following condition.

For every applet aj (j = 1, ...,M ), there exists a sensor
polling of a sensor value si∗ that is used in aj and satisfies

p(I(k)
si∗

= t(k+1)
si∗

− t(k)
si∗

> Daj ) ≤ e

where t(k)
si∗ < tEaj < t

(k+1)
si∗ .

Proof. We will prove by induction that for any trigger condi-
tion C of an arbitrary applet aj , there exists si∗ that is used
in C and satisfies

p(I(k)
si∗

= t(k+1)
si∗

− t(k)
si∗

> Daj ) ≤ e (1)

where t(k)
si∗ < tEaj < t

(k+1)
si∗ .

Let |C| be the number of sub-conditions in C.
Base Case: When |C| = 1, C = Leaf(si∗ , cop, x)

– Case I(k)
si∗ < Daj :

This case is not possible because of lines 3 and 4 in
Algorithm 2.

– Case I(k)
si∗ = Daj :

p(I(k)
si∗

> Daj ) = 0

– Case I(k)
si∗ > Daj :

We will prove this by contradiction. Let’s assume that

p(I(k)
si∗

= t(k+1)
si∗

− t(k)
si∗

> Daj ) > e

In order for an event to occur within a time period I
(k)
si∗ ,

∆si∗ should be larger than |xi∗−si∗ |
|si∗ |

.

psi∗ (∆si∗ ≥
|xi∗ − si∗ |
|si∗ |

| I(k)
si∗

) > e

However, from line 2 of Algorithm 2,

psi∗ (∆si∗ <
|xi∗ − si∗ |
|si∗ |

| I(k)
si∗

) ≥ 1− e

psi∗ (∆si∗ ≥
|xi∗ − si∗ |
|si∗ |

| I(k)
si∗

) < e

This is contradictory to the assumption. Therefore,

p(I(k)
si∗

= t(k+1)
si∗

− t(k)
si∗

> Daj ) ≤ e

Induction Case:
Induction Hypothesis:If the statement (1) is true for C with
|C| ≤ n, the statement (1) will be true for C which |C| is
n+ 1.
For C ′ = Internal(C ′left, lop, C ′right) which |C ′| is n+ 1,
C ′left and C ′right satisfy the statement (1) because |C ′left| ≤
n and |C ′right| ≤ n.
– Case loq = &&:

pl(I(kl)
sl

= t(kl+1)
sl

− t(kl)sl
> Daj ) ≤ e

pr(I(kr)
sr = t(kr+1)

sr − t(kr)
sr > Daj ) ≤ e

There exist four cases.
1) eval(C ′left) = true ∧ eval(C ′right) = true
Since C is true, this applet is already triggered and
the applet manager excludes this applet from the sensor
polling scheduler.
2) eval(C ′left) = true ∧ eval(C ′right) 6= true
From line 11 of Algorithm 2,

IC′ = I(kr)
sr = t(kr+1)

sr − t(kr)
sr

p(IC′ > Daj ) = p(I(kr)
sr > Daj )

Since eval(C ′left) can be false at t(kr+1)
sr , C ′ will less

likely occur than C ′right.

p(I(kr)
sr > Daj ) ≤ pr(I(kr)

sr > Daj ) ≤ e

Thus,
p(IC′ > Daj ) ≤ e



3) eval(C ′left) 6= true ∧ eval(C ′right) = true
We can complete this case using the same argument as
we used for the case 2).
4) eval(C ′left) 6= true ∧ eval(C ′right) 6= true
From line 15 of Algorithm 2,

IC′ = max(I(kl)
sl

, I(kr)
sr )

Without loss of generality, assume I(kl)
sl ≥ I(kr)

sr

IC′ = I(kl)
sl

= t(kl+1)
sl

− t(kl)sl

p(IC′ > Daj ) = p(I(kl)
sl

> Daj )

Since eval(C ′right) can be false at t(kl+1)
sl , C ′ will less

likely occur than C ′left.

p(I(kl)
sl

> Daj ) ≤ pl(I(kl)
sl

> Daj ) ≤ e

Thus,
p(IC′ > Daj ) ≤ e

– Case loq = ||:

pl(I(kl)
sl

= t(kl+1)
sl

− t(kl)sl
> Daj ) ≤ 1−

√
1− e

pr(I(kr)
sr = t(kr+1)

sr − t(kr)
sr > Daj ) ≤ 1−

√
1− e

From line 19 of Algorithm 2,

IC′ = min(I(kl)
sl

, I(kr)
sr )

Without loss of generality, assume I(kl)
sl ≤ I(kr)

sr

IC′ = I(kl)
sl

Since I(kl)
sl ≤ I(kr)

sr ,

pr(I(kl)
sl

> Daj ) ≤ pr(I(kr)
sr > Daj ) ≤ 1−

√
1− e

p(I(kl)
sl

> Daj ) = pl(I(kl)
sl

> Daj ) + pr(I(kl)
sl

> Daj )

− pl(I(kl)
sl

> Daj ) ∗ pr(I(kl)
sl

> Daj )

= 1− (1− pl(I(kl)
sl

> Daj )) ∗ (1− pr(I(kl)
sl

> Daj ))

≤ 1− (1− pl(I(kl)
sl

> Daj )) ∗ (1− pr(I(kr)
sr > Daj ))

≤ 1− {1− (1−
√

1− e)} ∗ {1− (1−
√

1− e)}
=e

Since the induction hypothesis holds for both logical operators,
the statement (1) holds for C ′ which |C ′| is n+ 1.

Since both the base and the induction cases are true, by
mathematical induction, the statement (1) holds for all the
trigger conditions C of an arbitrary applet aj .

V. EVALUATION

A. Methodology

To show that RT-IFTTT effectively schedules data polling,
this work simulates the RT-IFTTT system and compares its
polling scheduling algorithm with the following three baseline
algorithms in the evaluation.

• Optimistic Fixed Interval (Fix-Opt): A server polls data
from all the sensors every 15 minutes. The 15-minute
interval is chosen with reference to the commodity IoT
frameworks [1]. Since the algorithm sends requests for
data sporadically, the algorithm is highly likely to miss
an event with a short relative deadline.

• Conservative Fixed Interval (Fix-Con): A server polls
data from all the sensors every ∆tcon, where ∆tcon is
the minimum relative deadline of all the applets. The
algorithm rarely misses deadline, but requires lots of
communication.

• Random Interval (Random): A server polls data from all
the sensors with random intervals. The intervals are ran-
domly selected between the minimum relative deadline
and 15 minutes.

The above three scheduling algorithms check all the applet
conditions at every polling time and trigger appropriate actions
if an event occurrence is detected. The major difference
between our algorithm in the RT-IFTTT framework and the
baseline algorithms is that our algorithm dynamically deter-
mines polling intervals considering the probabilities of trigger
conditions.

To simulate the four algorithms with realistic data, this
work installs 10 physical sensors that consist of 2 sets of
temperature, humidity, UV Index, ambient light, and pressure
sensors, and then collects data from the sensors for 10 days.
This work uses the data in the simulation after removing noises
of the collected data using a low-pass filter. To differentiate
evaluation data from training data, this work divides the col-
lected data into two parts. The RT-IFTTT framework generates
the sensor value prediction model using one part of the data,
and evaluates the polling scheduling algorithm using the other
part of the data.

Using the value prediction model, the RT-IFTTT framework
calculates probabilities of sensor value gradients over specific
time gradient as described in Section III-C. Note that the
performance of the value prediction model hugely affects the
performance of our algorithm, and the RT-IFTTT framework
can use other sensor value prediction models instead of our
value prediction model.

B. Single-applet Results

Figure 8 compares the sensor polling timings of RT-IFTTT
with three baseline algorithms (Fix-Opt, Fix-Con, and Ran-
dom) for one applet. The Fix-Opt and Fix-Con algorithms
periodically poll a sensor every 15 minutes and 30 seconds
respectively. The random interval algorithm polls the sensor
with random intervals. As a result, the Fix-Opt and random
baseline algorithms miss the event deadline. The Fix-Con
algorithm meets the deadline, but it polls the sensor frequently
even when the sensor value is far from the threshold value of
the event, causing more battery consumption of the sensor.
Unlike the three baseline algorithms, RT-IFTTT dynamically
changes its polling intervals reflecting the current sensor value
and the threshold value. When the sensor value reaches the
threshold value of the event, RT-IFTTT reduces the sensor
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Fig. 8. Comparison of sensor pollings of different algorithms for one applet

polling intervals at near 3000 and 6000 seconds. If the sensor
value is far from the threshold, RT-IFTTT increases the polling
intervals. Here, at 6000 seconds, RT-IFTTT frequently polls
the sensor because the sensor value reaches the threshold
value although the event does not occur. Since RT-IFTTT
dynamically changes the polling intervals according to the
current sensor value and the threshold value, the RT-IFTTT
framework can reduce the number of polling requests while
keeping its deadline miss ratio small.

C. Multi-applet Results

This work compares the data scheduling algorithm of RT-
IFTTT with three baseline algorithms (Fix-Opt, Fix-Con, and
Random) described in Section V-A in terms of communication
counts, miss ratio, and response time for multiple applets. The
simulation uses randomly generated 100, 200, 300 and 400
applets with two sub-conditions based on the data set. The
condition values in the applets are randomly selected within a
certain range, considering the maximum and minimum values
of each data set. For example, the value of the humidity sensor
is absolutely between 0% and 100%, so the simulator sets
comparison target values of the humidity sensor as any integer
value between 0 and 100. Also, relative deadlines for each
applet are chosen from a finite set Ds = {30, 60, 300, 600}.
The simulation uses a constant miss ratio e = 0.10 for all the
applets. Due to the randomness in generating applets, trigger
conditions of some applets can be always true.

The simulator also calculates the ground truth values about
the actual event occurrences. The ground truth includes the
specific times at which events have occurred. To prevent
from triggering an event multiple times in a short period
due to the fluctuating sensor values, the simulator utilizes a
threshold interval, which restricts re-trigger of events within
the threshold interval. In other words, if the time gap between
two events is too short, the simulator considers the two events
as one event. With this true event history, this work evaluates
the polling scheduling algorithm of RT-IFTTT and the three
baseline algorithms.

1) Communication analysis: The communication count be-
tween sensors and a server is one of the crucial metrics

in evaluating IoT frameworks because the communication
count significantly affects the battery lifetime of the sensors.
Figure 9(a) shows the communication counts of the four
algorithms. Each communication count indicates the total
number of data polling requests between a server and sensors.
Since Fix-Opt and Fix-Con use a fixed polling period, their
communication counts do not change over the different num-
bers of the applets. However, the data scheduling algorithm of
RT-IFTTT utilizes flexible polling intervals. Since the intervals
are influenced by the applet conditions, the algorithm shows
different communication counts over the different numbers of
the applets. Moreover, RT-IFTTT frequently polls sensors to
meet the deadlines, the communication counts of RT-IFTTT
are larger than the counts of the random polling. Our polling
scheduling algorithm reduces the number of polling requests
by 39.47% on average and up to 64.12% for 100 applets
compared to the Fix-Con algorithm.

2) Miss ratio analysis: Miss ratio is defined as the number
of correctly detected events over the total number of events and
Figure 9(b) shows the result of evaluation on miss ratio. The
Fix-Con algorithm obtains near 0 miss ratio. The algorithm
sometimes misses an event occurrence because sensor data
may slightly fluctuate near the decision boundary. As expected,
the Fix-Opt algorithm hardly catches events for the applets of
which relative deadlines are shorter than their polling periods.
The random algorithm cannot also catch the events because
it sets its polling intervals regardless of the relative deadlines.
Therefore, the Fix-Opt and random algorithms show high miss
ratios, which are around 65.6% and 55.5%.

The actual miss ratio of our data scheduling algorithm is
7.62% on average, outperforming the Fix-Opt and random
algorithms by 8.96 times and 7.58 times respectively. Though
the evaluation results fully satisfy the miss ratio condition, the
current algorithm may not meet the predefined miss ratio if
sensor values are dramatically changing. This is because the
proposed probabilistic model for the value prediction described
in Section III-C assumes that sensor values periodically and
slowly change in a regular pattern. To predict irregularly
changing sensor values, programmers can use a more powerful
probabilistic model instead of the MNSVG model in the RT-
IFTTT framework.

3) Response time analysis: This work calculates response
times for each detected event by subtracting the event triggered
time and the actual event occurrence time, and takes an average
of them. Figure 9(c) shows the average response time of
each algorithm. The results show that RT-IFTTT has 2.63
times faster response time than Fix-Opt, but 4.04 times slower
response time than Fix-Con.

VI. RELATED WORK

Real-time scheduling for IoT environments: Scheduling
each task to meet its deadline has been a widely-discussed
issue in real-time systems [11–13, 19–24]. Kang et al. [19]
propose a real-time database model which manages deadline
miss ratio and sensor data freshness, and Kang [20] improves
the model to achieve lower power consumption. Chen [21]
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Fig. 9. Evaluation results for multiple applets. Here, target miss ratio of RT-IFTTT is 0.10.

considers sporadic tasks on real-time embedded systems, and
explores task set synthesis scheduling while satisfying time
constraints. Gopalakrishnan [22] suggests an optimal scheduler
that determines the polling period by the existence of the pre-
vious event, and balances both data freshness and energy costs.
Unlike the previous work, this work targets IoT frameworks
where a server manages a number of applets with different
event trigger conditions and checks the trigger conditions
repetitively, and the characteristics of the system pose different
challenges.

Recent works [11–13] have proposed data acquisition
scheduling algorithms for normally-off sensors to support
real-time decision making in the IoT environments. Kim et
al. [12] propose an algorithm that finds the optimal order of
acquisition of data items considering both decision validity
(data freshness) and schedulability constraints. However, their
work pays little attention to response time on actual event
occurrence, while this work tries to reduce the response time
by dynamically adjusting polling intervals.

Nath [24] introduces an acquisitional context engine (ACE),
a middleware for energy-efficient acquisition of context infor-
mation (attributes) from sensors. Based on the key observation
that context attributes are correlated each other, ACE tries
to reduce sensing cost by inferring one context attribute
from other context attributes. This work focuses on avoiding
acquisition of a requested value with inference caching and
speculative sensing, not on scheduling when to acquire data.

Sensor data prediction: Sensor data prediction plays a
crucial role in the RT-IFTTT framework to correctly calcu-
late an appropriate sensor polling interval. There exist some
studies [15–18] that use autoregressive (AR) model or its
derivation. Especially Raza et al. [18] propose derivative-
based prediction that samples least amount of data to predict.
Wei et al. [25] combine grey model and Kalman Filter to
ensure high prediction accuracy. Deshpande et al. [26] use
an approximation model with correlated data and scheduled
queries with the model to meet the deadline. The prediction
models can be used in the RT-IFTTT framework instead of the
MNSVG model because the CEI function uses the prediction
model as a black box. Here, some work additionally needs a

synchronization of a prediction model between a sensor and
a server [17], or requires an assumption that a sensor pushes
data and its prediction model [25].

Publish-and-subscribe or request-and-receive: Many IoT
frameworks [2, 7, 8] assume a publish-and-subscribe message
passing model [9, 10], but Hasenfratz et al. [14] point out
that the publish-and-subscribe message passing model causes
unnecessary energy consumption, and the request-and-receive
model is more energy efficient. However, the request-and-
receive model may increase the latency of data acquisition.
While exploiting the energy efficient data acquisition strength,
this work solves the latency problem by introducing trigger
condition-aware flexible polling intervals. By predicting sensor
values in the near future, this work dynamically increas-
es/decreases sensor polling intervals when trigger conditions
become unlikely/likely triggered.

VII. CONCLUSION

This work proposes RT-IFTTT, the first real-time IoT lan-
guage and its framework that uses trigger condition-aware
flexible sensor polling intervals. With the RT-IFTTT language,
users can develop their applets with real-time constraints.
Given applets, the RT-IFTTT framework finds an efficient
sensor polling interval for each sensor, reflecting current
sensor values, their related trigger conditions, and real-time
constraints, with a sensor value prediction model, a condition
evaluation interval function, and a sensor polling interval
function. This work evaluates the RT-IFTTT framework with
sensing data that 10 physical sensors collect for 10 days. With
the collected data, the evaluation results show that the RT-
IFTTT framework with the proposed scheduling algorithm
executes 100 to 400 applets according to user-defined real-
time constraints with up to 64.12% less sensor polling counts
compared to the framework with the fixed intervals.
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