Rapid prototyping of loT applications with Esperanto compiler

Gyeongmin Lee
POSTECH
Pohang, Republic of Korea
paina@postech.ac.kr

Jong Kim
POSTECH
Pohang, Republic of Korea
jkim@postech.ac.kr

ABSTRACT

Integrating various networked devices, the Internet of Things
(IoT) enables various new services like home automation,
making its market larger and more competitive. Although
rapid development of an IoT application is crucial to keep up
with the highly competitive IoT market, developing an IoT
application is challenging for programmers because the pro-
grammers should integrate multiple programmable devices
and heterogeneous third-party devices. Some IoT frameworks
integrate programming environments of multiple devices, but
they either require device-specific implementation for third-
party devices without any device abstraction, or abstract all
the devices to the standard interfaces requiring unnecessary
abstraction of programmable devices. This work introduces
the Esperanto framework that integrates loT devices with
selective abstraction, allowing rapid prototyping of an IoT
application. Exploiting the correspondence between an ob-
ject and a thing in the object oriented programming (OOP)
model, the Esperanto framework allows programmers to write
only one OOP program instead of multiple programs for each
device, and to manipulate third-party devices with their com-
mon ancestor classes. Compared to an existing approach on
the integrated IoT programming, Esperanto requires 33.3%
fewer lines of code to implement 5 IoT services, and reduces
their response time by 44.8% on average. Morcover, with an
empirical study, this work shows that the Esperanto frame-
work reduces the development time by 52.7%.

CCS CONCEPTS

e Hardware — Emerging languages and compilers; o
Software and its engineering — Distributed programming
languages;

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and /or a fee. Request permissions
from permissions@acm.org.

RSP’17, October 15-20, 2017, Seoul, Republic of Korea

© 2017 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.

ACM ISBN 978-1-4503-5418-9/17/10. .. $15.00
https://doi.org/10.1145/3130265.3138857

Seonyeong Heo
POSTECH
Pohang, Republic of Korea
heosy@postech.ac.kr

Bongjun Kim
POSTECH
Pohang, Republic of Korea
bong90@postech.ac.kr

Hanjun Kim
POSTECH
Pohang, Republic of Korea
hanjun@postech.ac.kr

KEYWORDS
Internet of Things, IoT, Rapid prototyping, Esperanto

ACM Reference Format:

Gyeongmin Lee, Seonyeong Heo, Bongjun Kim, Jong Kim, and Han-
jun Kim. 2017. Rapid prototyping of IoT applications with Es-
peranto compiler. In Proceedings of RSP’17, Seoul, Republic of
Korea, October 15-20, 2017, 7 pages.
https://doi.org/10.1145/3130265.3138857

1 INTRODUCTION

Integrating various networked devices, the Internet of Things
(ToT) enables new services such as home automation and
health monitoring. Figure 1 shows a baby monitor application
as an [oT service example. In the example, if the baby cries,
an IP camera notifies parents by blinking smartbulbs and
sending a message to mobile phones. Like this example, the
IoT environment enables new promising services, and the
IoT market will be larger and more competitive as more and
more devices are connected to the Internet.

Although rapid development of an application is crucial
for IoT application programmers to keep up with the highly
competitive IoT market, building an IoT application is chal-
lenging and time-consuming due to multiple programmable
devices and heterogeneous APIs of third-party devices. To
integrate multiple programmable IoT devices, programmers
should write multiple disjoint sub-programs for each device,
and explicitly manage communication among the devices.
Moreover, since different vendors adopt different APIs for
their devices, programmers should add device-specific im-
plementation for similar third-party devices like Hue and
LIFX smartbulbs. Thus, to simplify IoT programming, an
IoT programming platform should integrate multiple pro-
grammable [oT devices while abstracting various APIs of
similar third-party devices into common APIs.

Though recent works [1, 4-6, 9-11, 14-17] have proposed
various IoT platforms that reduce the development time,
but none of them can fully solve the challenges. Protocol
integration platforms [4, 9, 17] unify communication proto-
cols across IoT devices, but they still require programmers
to write and synchronize multiple sub-programs without a
holistic view of an IoT application. Device integration plat-
forms [1, 6, 14, 15, 18] integrates multiple IoT devices with a
holistic view of an application. However, they either require

RSP’17, October 15-20, 2017, Seoul, Republic of Korea

ol Store video/
y ot Request vid;
t\ﬁY (\60 eques video
Scnd video
QI “o ™ Smartphone Cloud Server
L % (ARM) (x86)

L \} \ E%!
IP Camera Blink bulbs % Smartbulb
(ARM) ‘§ (Hue, LIFX)

Figure 1: An IoT service example: Baby monitor

device-specific implementation for third-party devices without
abstracting heterogeneous APIs into a common API [1, 6, 14],
or require unnecessary abstraction of programmable devices
to the standard interfaces considering all the devices as third-
party devices [15, 18].

This work introduces rapid prototyping of IoT applica-
tions with the Esperanto compiler-runtime framework [12].
Exploiting the correspondence between an object and a thing
in the object oriented programming (OOP) model, The Es-
peranto language allows programmers to write only one OOP
program instead of multiple programs for each device, and
to manipulate third-party devices with their common ances-
tor classes. The Esperanto compiler automatically partitions
the integrated OOP program into multiple sub-programs for
each IoT device, and inserts communication and synchro-
nization code. The Esperanto runtime dynamically binds the
ancestor class to its descendant objects reflecting connected
third-party devices at run-time.

To evaluate the Esperanto framework for rapid prototyp-
ing, this work implements 14 events of 5 IoT services such
as baby monitor, fitness tracking, taxi application, heart at-
tack detection, and fire alarm application in the Esperanto
language and an existing device integration approach. The
Esperanto framework requires 33.3% fewer lines of code with
44.8% shorter response time on average. Moreover, this work
executes an empirical study that shows that the Esperanto
language reduces the development time by 52.7%.

2 ESPERANTO FRAMEWORK

To effectively reduce the burden of IoT programmers, the
proposed IoT framework should be simple and easy for pro-
grammers to learn and use, and also be powerful enough
to solve the challenges such as device integration and ab-
straction. The Esperanto framework [12] revisits the object
oriented programming (OOP) model that most programmers
are familiar with. In the OOP model, objects correspond
to things in the real world, and a parent class abstracts
its children classes. With a minimal extension of an existing
OOP language, three new annotations in total, the Esperanto
framework integrates multiple programmable devices with
one OOP program, and selectively abstracts heterogeneous
APIs of third-party devices to their parent classes.
Integrated programming: An IoT service is composed
of things and communications among things. Similarly, an
OOP program is composed of objects and describes interac-
tions between objects. Based on the correspondence between

G. Lee et al.

Syntax of the Esperanto primitives
Device Declaration #pragma EspDevDecl(devID,main)
#pragma EspDevice(devID, (conditions))
class className;
3rd-party Device Import | #pragma EspImport(className,funcName)

Device-Object Mapping

Runtime variable examples in condition

TYPE Device type (e.g. Server, Mobile, Bulb)
VENDOR Vendor of device
MODEL Model name of device
ARCH Processor architecture of device
0s Operating system of device

Table 1: Esperanto syntax

objects and things, the Esperanto language integrates multi-
ple sub-programs of IoT devices in an IoT service into a single
integrated OOP program. As an OOP programmer manages
multiple objects in a single OOP program, an Esperanto
programmer manages multiple IoT devices with a single Es-
peranto program. According to the Esperanto primitives, the
Esperanto compiler partitions the integrated program into
multiple sub-programs, and inserts communication codes for
method calls at different objects.

Device abstraction: The concept of inheritance and
polymorphism gives “is-a” relationships between objects and
allows polymorphic behaviors while providing a common in-
terface to objects. Exploiting this concept, the Esperanto
language abstracts similar types of devices to have a common
interface and binds device-specific implementation of the
devices to the interface. For the abstract interface, the Es-
peranto compiler dynamically links its corresponding object
implementation reflecting the execution environment.

2.1 Esperanto Language

This work introduces the Esperanto language [12] that ex-
tends the existing C++ language with three annotations for
the easy and powerful integrated IoT programming with se-
lective abstraction. Though the Esperanto language extends
the C++ language, the proposed syntax and semantics are
not tied to C++ because the proposed language does not
require any C++ specific feature. Table 1 and Figure 2 show
the three annotations and the Esperanto codes for the baby
monitor example in Figure 1.

EspDevDecl declares a programmable device with its
name (devID), constructor and destructor. The constructor
and the destructor will be invoked at the beginning and the
end of the sub-program of the device. For example, Figure 2
declares two programmable devices such as Cam (IP Camera)
and Phone with their constructors and destructors (Lines
3-4). Here, EspDevDecl is only allowed for programmable de-
vices because the Esperanto compiler generates sub-program
binaries for the EspDevDecl annotated devices.

EspDevice maps its annotated class to the declared de-
vice. For example, the Esperanto programmer can install the
IPCamera class at the device Cam with the EspDevice an-
notation at line 10 in Figure 2. Here, the programmer inserts
the annotation only for code that should be executed in the
device. Given the annotation, the Esperanto compiler will

Rapid prototyping of loT applications with Esperanto compiler

/% %+ BabyMonitor.h/cpp xx* =%/

// Declare all the programmable devices
#pragma EspDevDecl (Cam, cam_ctor, cam_dtor)
#pragma EspDevDecl (Phone, m_ctor, m_dtor)

// Generate an import function for 3rd-party devices
#pragma EspImport (SmartBulb, getBulbs)

0N e U R W N

©

// Map IPCamera class to device Cam
#pragma EspDevice (Cam)

e
= O

class IPCamera {

§)

private:
void onBabyCry () ;
}

= e e
SRR

// Map Mobile class to device Phone
#pragma EspDevice (Phone)
class Mobile {
public:
void alarm(string msg);
bi

NN N =R e
W N = O O K N

IPCamera* cam;
List<Mobile*> m_list;
SmartBulb+* bulbs;
int num_bulbs = 0;

NN NN
® N 3 ok

// Work as main function of Cam device

N
©

void cam_ctor () {
cam = new IPCameraf();
// Bind all the SmartBulb instances
bulbs = getBulbs (&num_bulbs);

}

W oW W W W w
Gk W R~ O

void IPCamera::onBabyCry () {
for(size_t i=0;i<m_list.size();i++){

w W
PECN

// Send a message through a function call

w
@

m_list[i]->alarm("Baby is crying");

w
©

}
// Device abstraction for SmartBulbs
for(size_t i=0;i<num_bulbs;i++) bulbs[i]->blink();

I NN
B W N = O

// A mobile phone registers itself to a m.list
45 void m_ctor () {

46 Mobile* m = new Mobile();

a7 m_list.push_back (m);

48 |}

Figure 2: Esperanto pseudo codes of the baby moni-
tor application in Figure 1

automatically map non-annotated instructions to appropriate
TIoT devices based on performance estimation results.
EspDevice can optionally pass device conditions as an
argument to specify its target physical device. The Esperanto
compiler framework requires hardware description of each
device such as its device type, vendor, model, architecture
and operating system. The Esperanto runtime dynamically
checks the description, and maps the object to the appropri-
ate device. For example, Figure 3 shows that Bulb device
programmers annotate their classes with VENDOR and MODEL
runtime variables (Line 2 in Hue.h and 2 and 9 in LIFX.h).
According to the annotated condition, the runtime maps Hue,
LIFX, and LIFXZ classes to their corresponding physical de-
vices such as Hue, LIFX and LIFXZ smartbulbs.
EspImport and its import function allow IoT application
programs to exploit non-programmable third-party devices
like Hue and LIFX bulbs. EspImport generates an import

RSP'17, October 15-20, 2017, Seoul, Republic of Korea

1 /% **%* SmartBulb.h **x %/

2 #pragma EspDevice (Bulb, TYPE==BULB)
3 class SmartBulb {

4 public:

5 virtual bool connect() = 0;

6 virtual void blink() = 0;

7)i

1 /* *%x* Hue.h #%x «/

2 #pragma EspDevice (Bulb, VENDOR==PHILIPS)
3 class Hue : SmartBulb {

4 public:

5 bool connect ();

6 void blink();

7 private:

8 char bridge[23];

9 };

1 /% %%x LIFX.h ##x /

2 #pragma EspDevice (Bulb, VENDOR==LIFX)
3 class LIFX : SmartBulb {

4 public:

5 bool connect ();

6 void blink();

7 i

8

9 #pragma EspDevice (Bulb, MODEL==LIFXZ)
10 class LIFXZ : LIFX{

11 public:

12 void blink (int idx);

13 };

Figure 3: SmartBulb class and its descendant classes

function that binds all the className devices (Line 7),
and the import function returns className objects of all
the connected devices (Line 32). Programmers can specify a
certain type of devices by passing its corresponding class type
as the className argument. For example, if a programmer
uses LIFX instead of SmartBulb as the first argument, the
import function returns connected LIFX and LIFXZ objects
but does not return Hue objects.

Runtime variables are hardware and system informa-
tion of connected devices such as their device type, vendor,
architecture and operating system. With the runtime vari-
ables, programmers can specify a target device that an object
is mapped on.

2.2 Esperanto Compiler

The Esperanto compiler [12] transforms an integrated Es-
peranto program into multiple sub-programs for IoT devices.
First, the compiler marks all the instructions in a program
with their target devices. Then, the compiler divides the
marked instructions into multiple sub-programs, and inserts
communication instructions. Finally, the compiler customizes
each sub-program for each device with back-end compilers.
To mark instructions in a program, the compiler recognizes
the Esperanto syntax, and maps all the instructions into their
target devices. Figure 4 shows how the compiler transforms
the Esperanto program with code snippets. The Esperanto
parser recognizes the Esperanto syntax, and changes each
pragma to a metadata. The metadata generator annotates
all the instructions in a device-annotated class with their
target devices. For example, the parser and the metadata

RSP’17, October 15-20, 2017, Seoul, Republic of Korea

#EspDevice (Cam)

=» class IPCamera @Cam
class IPCamera ¢

Bulb**
getBulbs (int& size);

#EspImport
(Bulb, getBulbs)

Metadatag // IPCamera@Cam
Generator | void onBabyCry () ;

// IPCamera@Cam cam=new IPCamera () ;
cam=new IPCamera(); mapObjDev (cam, myIP);
// List -
m list=new List(); m list=new List();
blink(); @Cam blink(); @Cam
void blink() ; void blink(); @Cam

-
alarm() ; @Cam alarm(); @Cam,RmtCall
void alarm(); @Phone void alarm(); @Phone

Figure 4: Marking Process

generator mark TPCamera class and its member functions as
Cam device. The object mapper inserts a call instruction of
mapObjDev where a EspDevDecl-annotated object is allo-
cated. The mapOb jDev function registers the pointer of the
newly allocated memory object and the current network IP
into the object-device map in the runtime. The mark inferrer
marks all the non-annotated functions. The mark inferrer
estimates performance for possible devices, and annotates
the optimal device to the functions. If the caller and callee
instructions are marked as different devices, the mark inferrer
annotates the caller as a remote function call (RmtCal1l) that
requires network communication.

After marking instructions, the compiler automatically
partitions the Esperanto program into multiple sub-programs
for each IoT device, and inserts communication instructions as
Figure 5 illustrates. First, the compiler replaces all the remote
function call sites marked as RmtCall with the network
communication send function calls. The compiler passes the
memory address of callee objects as the first argument of the
send function. Since mapObjDev registers the object address
with its IP, the send function can find the target IP from
the object address (Figure 6). Then, the compiler generates
multiple sub-programs and erases instructions that are not
marked in each sub-program. Finally, the compiler unifies
heterogeneous memory layouts such as alignment, pointer
size and endianness across different devices.

For EspImport to bind devices in a resource-centric and
device agnostic way, the Esperanto compiler framework au-
tomatically generates a SW description file that includes
resources of each object, and an import function that allo-
cates device objects reflecting underlying physical devices.
The compiler analyzes each EspDevice annotated class with
the annotated conditions, and writes its class hierarchy and
public EspDevice member variables to the SW description
file. Based on the analyzed class hierarchy, the compiler gener-
ates an import function for each EspDevice annotated class.
The import function dynamically reads HW descriptions of
connected devices, compares the descriptions with conditions

G. Lee et al.
i sp list[i]->alarm(msg); @Cam,RmtCall
é void alarm(msg) ; @Phone
{ send(&sp list[i],ALARM,msqg); @Cam,RmtCall
Comm. | void alarm(); @Phone
CodeGen | reqHandler (sock) { @Phone
g calledFcn = recv(sock); @Phone
i switch(calledFcn) { @Phone
! case ALARM: alarm(msg) ; @Phone
iy
3 #EspDevice (Bulb)
i class SmartBulb
i SmartBulb** getSmartBulb(size t &size){
i size = getNumDevs (TYPE==BULB) ;
! SmartBulb** bulbs = malloc(..)7
é for(i=1:size){
H if (getRuntimeVar (i, VENDOR)==LIFX) {
: if (getRuntimeVar (i, MODEL)==LIFXZ)
: bulbs[i] = new LIFXZ();
: else
Import | bulbs[i] = new LIFX();
CodeGen : }
-
i\ return bulbs;
A
i\ SmartBulb** getBulbs (inté&) ; @Cam
! SmartBulb** getBulbs (size t &size){ (@Cam
i return __ getSmartBulb(size);
............. e
ip = malloc(sz); - P= dsm malloc (sz) ;
\ free(p); dsm free (p) ;
Memory Ustruct datay T struct data{ 7
Uniﬁeri a, b -»> a, b @align(8)
i }
{x = perszy T T ptréd = zext (ptr32);

x = *ptré64;

Figure 5: Partitioning Process

of the annotated class and its descendant classes, and allo-
cates corresponding objects. Figure 5 shows how the import
code generator transforms EspDevice and EspImport an-
notations into an import function and its wrapper function.

2.3 Esperanto Runtime

The Esperanto runtime [12] manages all the connected IoT
devices at the user environments, and supports multiple pro-
grammable device integration and selective abstraction. The
runtime consists of three modules such as a device manager,
a communication manager, and a memory manager.

The device manager manages all the connected IoT devices
and supports abstraction of third-party devices. When a new
ToT device is connected to the user environment, the device
manager collects HW description about the device such as
IP address, device type, vendor, architecture, and operating
system (Steps 1 to 3 in Figure 6). Here, the Esperanto runtime
periodically checks connected IoT devices to find the third-
party IoT devices that do not include the Esperanto runtime.
When an Esperanto program searches devices with a runtime

Rapid prototyping of loT applications with Esperanto compiler

RSP'17, October 15-20, 2017, Seoul, Republic of Korea

: _________________________________ Service Program ! [Service [Event [Description |
: I
1 sCelwer I\g‘blle | IPCam Class || Bab Alarm Notifies the baby cry to bulb and mobile
L tlass as8 ! y Send an image frame to mobiles and
——————————————————————————————————————— = Monitor Cam)
- - upload the frame to the server
@ mapObjDev(m_list[0], Memory & Comm. Manager 1 7 H H H
! > 192.168.1.3) y - 8 Register Register a mobile device into the server
Crass | Ancostor Classes) Register | Fitnelss Scale Send weight e?nd body f‘.ixt to rpoblles
Server | S Tracking | Update Update tracking and weight history
3 Insert crver crver &cam__[192.168.1.5] T
@ Read | | 1w & sw [IPCameral IPCamera Zesorver 172217 11 Report Generate an analysis report
SWdesc| | geseription [_Hue Hue, SmartBulb_| [i5i707192.168.1.3 Taxi Register Register a taxi driver into the server
E Espers > Mobile E Obj-Dev Map axd Loc Update the location of a taxi
speranto| [Esperanto Software Description M App. Call Call a nearby taxi
. : y taxi
Runtime | | Runtime SmartBulb Class - - - -
TYPE |ARCH[VENDOR| 1P . c Register Register a hospital server into the server
Server| Server [x86 172... Afir K Alarm Notify heart attack to a nearby hospital
IPCam|Cameral ARM _ 192....| [LIEX Clasy|Hue Clas ac SendRate | Send heart rates to history
AD Read B”Ll?l ?’ELB SPh‘—l‘PS 119922 Fire Info Send temperatures to the server
HW desc _)IM"_'I‘}{ﬂ—“R” Loamsung] 0= Dev. Dev. Alarm Alarm Notify a fire alarm to mobiles
ardware Description Manager Program | | Program
Table 2: Evaluated event description
| Server Mobile IPCam HW description file | LIFX HUE p
IHW desc.| [HW desc. : ARCH=ARM,TYPE=Camera IHW desc.| [HW desc.|
Server Mobile IPCam LIFX Hue [Service [Device [Specification |
ODROID-XU4 with USB-CAM 720P
. . IP Camera g B 5422 2GB
Figure 6: The overall structure of the runtime (Samsung Exynos >)
Bab Mobile Samsung Galaxy S5
aby (Qualcomm Snapdragon 801, 3GB)
Monitor Deskt g
Server SSKLOp Derver
(Intel Core i7-6700, 16GB)
condition such as TYPE==BULB, the device manager searches Bulb Philips Hue and LIFX
. . . o Server Desktop Server
corresponding devices from the HW description. Mobile Samsung Galaxy S5
To support device abstraction, the device manager also Fitness ODROID-CO

keeps SW description that includes all the ancestor classes
of a connected device. If an Esperanto program imports
one of the ancestor classes using EspImport, the runtime
checks the SW description and returns the connected devices.
Then, the Esperanto program creates appropriate objects
for the devices with their HW description. For example,
the _getSmartBulbs function in Figure 5 requests the
Esperanto runtime to search third-party devices that have
SmartBulb as its ancestor class. The Esperanto runtime
finds descendent classes of SmartBulb from the SW descrip-
tion and returns their connected device lists from the HW
description such as Hue, LIFX and LIFXZ. As Figure 5 il-
lustrates, the __get SmartBulb function creates and returns
corresponding descendent objects for the devices in the lists.

The communication manager maps objects in an Esperanto
program to a physical device, and manages communica-
tion among objects. The compiler inserts an object-device
mapping function call (mapObjDev) for every EspDevice-
annotated object allocation. When mapOb jDev is invoked,
the communication manager inserts a new element to the
object-device map. Steps 4 and 5 in Figure 6 show how the
Esperanto runtime maps a newly created device object to
a connected physical device. If send is invoked, the device
manager finds a corresponding IP address with the memory
address of the passed-in object from the object-device map,
and sends the message to the target IP address.

The memory manager in the Esperanto runtime manages
memory coherence across IoT devices at run-time. Since the
memory unifier in the Esperanto compiler unifies heteroge-
neous memory layouts across heterogeneous IoT devices as
one layout, the memory manager in the runtime only needs to
support memory coherence without worrying about memory
translation.

Tracking | SmartScale (Amlogic ARM Cortex-A5, 1GB)

SmartBand Gear Fit and Mi Band

Taxi Server Desktop Server

x Driver ODROID-XU4

pp- Customer Samsung Galaxy S5

Gateway Desktop Server

Heart Mobile Samsung Galaxy S5

Attack o k. & Y
Hospital Desktop Server
SmartBand Gear Fit and Mi Band
Server Desktop Server

Fire Mobile Samsung Galaxy S5

Alarm Thermometers | ODROID-XU4 with a weather board
Bulb Philips Hue and LIFX

Table 3: IoT Service and device specification

3 EVALUATION

To evaluate the Esperanto language and framework, this
work implements 5 IoT services such as baby monitor, fitness
tracking, taxi application, heart attack detection and fire
alarm application, which support 14 events in total. Table 2
briefly describes each event. Moreover, this work deploys the
services on heterogeneous IoT devices ranging from embed-
ded systems such as ODROID-XU4 and ODROID-CO [7] to
a Samsung Galaxy S5 mobile phone and a desktop server.
The mobile runs the Android 4.4.2 (KitKat), the desktop
server runs Ubuntu 16.04, and the embedded systems run
Ubuntu MATE 1.10.2. Here, to evaluate programmability on
a device-specific custom hardware, this work installs a cam-
era hardware module and a weather board on the embedded
systems. Third-party devices such as smartbulbs (Hue and
LIFX) and smart bands (Gear Fit and Mi Band) are used
to evaluate the third-party device management in a device
agnostic way. All the ODROID devices are wirelessly con-
nected with 144Mbps maximum bandwidth (802.11n), and

RSP'17, October 15-20, 2017, Seoul, Republic of Korea

3
S
S

=
=3
S

¥
=3
S

Lines of Code (lines)
B
(=3
(=1

il

Baby Monitor Fitness
Tracking

R

Taxi App. Heart Attack Fire Alarm

H Programmable device-centric ~ @Cloud-centric O Esperanto

Figure 7: Lines of code of the IoT programs

[V S N SN
S S S o o
S & 2 & 3

Response Time (msec)
=
=1

e N R | N %mm’_l‘h

Alarm Cam Reg. Scale Upd. Rep. Reg. Loc Call Reg. Alarm Send Alarm Info
Rate

Baby Fitness Tracking Taxi App. Heart Attack Fire Alarm

Monitor

O Cloud-centric O Esperanto O ldeal

Figure 8: Response time of each event

the mobile is connected with 844Mbps (802.11ac). Table 3
describes devices used in each service.

3.1 Programmability of Esperanto

To compare the programmability of the Esperanto language
with other IoT programming models, this work also im-
plements the same services in programmable device-centric
and cloud-centric integration approaches. The programmable
device-centric approach integrates multiple programmable
devices into one programming environment like Esperanto,
but it does not support any device abstraction requiring
device-specific implementation for each third-party devices.
The cloud-centric integration approach integrates IoT devices
with standard abstraction, so it requires unnecessary device
handlers and device programs for programmable devices.
Here, to eliminate performance effects from the underlying
platforms, all the services are written in C++.

Figure 7 shows that Esperanto successfully simplifies [oT
programming. For the same 5 IoT services, the average lines
of the Esperanto programs are 23.8% and 33.3% shorter
than lines of programmable device-centric and cloud-centric
programs. The lines of code consist of third-party device
management, device handlers and service algorithm. All the
programs do not include any device registration, identifica-
tion and explicit communication code among devices because
the three approaches support integrated IoT programming
with a holistic programming view. Since Esperanto supports
device agnosticism without requiring device-customized code
for third-party devices, the Esperanto programs have fewer
lines of code than the programmable device-centric ones.

G. Lee et al.

Device-

Questions centric Esperanto
G1 Average LoC 302.6 118
G1 Average development time (mins) 401 151.4
G2 Average LoC 310.4 128.4
G2 Average development time (mins) 307.6 183.6
Average LoC 306.5 123.2
Average development time (mins) 354.3 167.5
Ease of learning (1:Difficult, 5:Easy) 3.2 4.3
Base of use (1:Difficult, 5:Easy) 2.5 4.6
Ease of debugging (1:Difficult, 5:Easy) 2.6 3.2
Applicability for IoT programming 9.7 49
(1:Not Applicable, 5:Applicable) .)

Table 4: Empirical study results

Here, if the programs support more third-party devices, the
programmable device-centric programs will have more lines
of code because the lines of device-customized code is pro-
portional to the number of third-party devices. Moreover,
the Esperanto programs do not include device handlers for
programmable devices, so the Esperanto programs have also
fewer lines of code than the cloud-centric ones. As a result, Es-
peranto requires only service algorithm codes and effectively
reduces the burden of programmers.

3.2 Response Time Analysis

This section evaluates performance of the cloud-centric inte-
gration approach and Esperanto. This work does not evaluate
the programmable device-centric programs because the pro-
grammable device-centric programs and the Esperanto pro-
gram have the same communication topology. Instead of the
programmable device-centric programs, this work manually
implements the ideal IoT services that do not include any
platform overheads with optimal communication to analyze
the maximum achievable performance of the services.

Figure 8 shows the response time of each event in the IoT
programs. The results are the average response time of ten
invocations per event. Since Esperanto allows IoT devices
to directly communicate with each other without passing
through the cloud server, Esperanto shows average 44.8%
shorter response time than cloud-centric integration approach.
Compared to the ideal programs, the Esperanto programs
suffer from average 12.56 milliseconds and up to 28.14 mil-
liseconds (Baby Monitor Alarm) latency overheads that
are negligible enough for people not to recognize [13].

3.3 Empirical Study

To deeply evaluate programmability of the Esperanto lan-
guage, this work executes an empirical study with 10 junior
and senior computer science undergraduate students who
have experiences in network programming. In the empirical
test, all the participants learn the device-centric and Es-
peranto programming models, and develop one event (Cam)
of the baby monitor program in each model. To remove
side-effects from the order of the programming models, this
work divides the participants into two groups. Participants
in group 1 develop the program in the device-centric model,

Rapid prototyping of loT applications with Esperanto compiler

and then develop the program in the Esperanto language.
Participants in group 2 develop the program in the opposite
order.

Table 4 shows the results of the empirical study. The
Esperanto language allows the participants to write 2.48
times shorter programs and reduces their development time
by 52.7%, compared to the device-centric programming model.
The survey results also show that the participants easily learn
and use the Esperanto language. The participants answer
that debugging is a little difficult in the Esperanto language
due to unfriendly compile error message. Generating detailed
compile error messages and debugging tools will make the
debugging easier, and this work leaves it as a future work.

4 RELATED WORK

To reduce the burden of IoT programmers, previous works [2,
3,5, 6, 8, 10, 11, 14-16, 19] have proposed integrated pro-
gramming models and platforms for distributed systems in-
cluding IoT and wireless sensor networks. Like Esperanto, the
programming models and platforms integrate programming
environments of heterogeneous devices and provide a holistic
view of an application to programmers.

SmartThings [15] is a programming platform for IoT that
encapsulates a physical device as a composition of its capa-
bilities. The SmartThings capability model allows an applica-
tion programmer to write an IoT service program in a device
agnostic way by providing device management in capabil-
ity granularity. However, since the framework only supports
standard capabilities, it limits its applicability for custom pro-
grammable devices. Unlike SmartThings, Esperanto allows
the programmer to directly manage programmable devices
without the standardization of the devices.

Node-RED [14] and its extensions such as distributed
Node-RED [6] and glue.things [11] provide a graphical user
interface for integrated IoT programming. With the proposed
systems, programmers can design an IoT system by graphi-
cally combining devices and specifying data flows. However,
due to their lack of support for third-party integration in
a device agnostic way, the programmers should implement
different binding codes to control various third-party devices.
On the other hand, this work supports device agnosticism by
exploiting the inheritance and polymorphism features of the
object oriented programming model.

nesC [5], Eon [16] and Mace [10] are extended C/C++ lan-
guages that support a holistic design of networked embedded
systems. These languages provide abstraction with high level
objects and connect components with their interfaces. Al-
though they simplify complex event handling implementation,
the languages have little consideration for device agnosticism
since they do not target IoT environments.

5 CONCLUSION

This work introduces the Esperanto framework that inte-
grates loT devices with selective abstraction, and shows that
the Esperanto framework successfully enables rapid prototyp-
ing of an IoT application. Compared to an existing approach

RSP'17, October 15-20, 2017, Seoul, Republic of Korea

on the integrated IoT programming, Esperanto requires 33.3%
fewer lines of code to implement 5 IoT services, and reduces
their response time by 44.8% on average. With an empirical
study, this work also shows that the Esperanto framework
reduces the development time by 52.7%.

ACKNOWLEDGMENTS

We thank the CoreLab and HPC Lab for their support and
feedback during this work. This work is supported by Sam-
sung Research Funding Center of Samsung Electronics under
Project Number SRFC-TB1403-04 and SRFC-TB1703-03.

REFERENCES

[1] Michael Blackstock and Rodger Lea. 2014. Toward a Distributed
Data Flow Platform for the Web of Things (Distributed Node-
RED). In Proceedings of the 5th International Workshop on
Web of Things.

Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram,

Lantian Zheng, and Xin Zheng. 2007. Secure Web Applications

via Automatic Partitioning. In Proceedings of Twenty-first ACM

SIGOPS Symposium on Operating Systems Principles.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.

2006. Links: Web Programming Without Tiers. In Proceedings

of the 5th International Conference on Formal Methods for

Components and Objects.

[4] Eclipse SmartHome 2017. http://eclipse.org/smarthome. (2017).

[5] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric

Brewer, and David Culler. 2003. The nesC Language: A Holistic

Approach to Networked Embedded Systems. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design

and Implementation.

Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor C.M.

Leung. 2015. Developing IoT applications in the fog: a distributed

dataflow approach. In Proceedings of International Conference

on the Internet of Things.

[7] Hardkernel:ODROID 2017. http://www.hardkernel.com. (2017).

[8] Galen C. Hunt and Michael L. Scott. 1999. The Coign Automatic
Distributed Partitioning System. In Proceedings of the Third
Symposium on Operating Systems Design and Implementation.

[9] ToTivity Project 2017. https://www.iotivity.org. (2017).

[10] Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit
Jhala, and Amin M. Vahdat. 2007. Mace: Language Support for
Building Distributed Systems. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and
Implementation.

[11] Robert Kleinfeld, Stephan Steglich, Lukasz Radziwonowicz, and
Charalampos Doukas. 2014. Glue.Things: A Mashup Platform
for Wiring the Internet of Things with the Internet of Services.
In Proceedings of the 5th International Workshop on Web of
Things.

[12] Gyeongmin Lee, Seonyeong Heo, Bongjun Kim, Jong Kim, and
Hanjun Kim. 2017. Integrated IoT Programming with Se-
lective Abstraction. In Proceedings of the 18th ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems.

[13] Robert B. Miller. 1968. Response Time in Man-computer Con-
versational Transactions. In Proceedings of AFIPS Fall Joint
Computer Conference.

[14] Node-RED 2017. http://nodered.org. (2017).

[15] SmartThings 2017. http://www.smartthings.com. (2017).

[16] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew
Brennan, Mark D. Corner, and Emery D. Berger. 2007. Eon: A
Language and Runtime System for Perpetual Systems. In Proceed-
ings of the 5th International Conference on Embedded Networked
Sensor Systems.

[17] The Thing System 2017. http://thethingsystem.com. (2017).

[18] xively by LogMein 2017. http://www.xively.com. (2017).

[19] Irene Zhang, Adriana Szckeres, Dana Van Aken, Isaac Ackerman,
Steven D. Gribble, Arvind Krishnamurthy, and Henry M. Levy.
2014. Customizable and Extensible Deployment for Mobile/Cloud
Applications. In 11th USENIX Symposium on Operating Systems
Design and Implementation.

2

[3

6

