
Speculative Separation for Privatization and Reductions

Nick P. Johnson Hanjun Kim Prakash Prabhu Ayal Zaks† David I. August
Princeton University, Princeton, NJ †Intel Corporation, Haifa, Israel

{npjohnso, hanjunk, pprabhu, august}@princeton.edu ayal.zaks@intel.com

Abstract
Automatic parallelization is a promising strategy to improve appli-
cation performance in the multicore era. However, common pro-
gramming practices such as the reuse of data structures introduce
artificial constraints that obstruct automatic parallelization. Privati-
zation relieves these constraints by replicating data structures, thus
enabling scalable parallelization. Prior privatization schemes are
limited to arrays and scalar variables because they are sensitive to
the layout of dynamic data structures. This work presents Privateer,
the first fully automatic privatization system to handle dynamic and
recursive data structures, even in languages with unrestricted point-
ers. To reduce sensitivity to memory layout, Privateer speculatively
separates memory objects. Privateer’s lightweight runtime system
validates speculative separation and speculative privatization to en-
sure correct parallel execution. Privateer enables automatic paral-
lelization of general-purpose C/C++ applications, yielding a ge-
omean whole-program speedup of 11.4× over best sequential ex-
ecution on 24 cores, while non-speculative parallelization yields
only 0.93×.

Categories and Subject Descriptors D.1.3 [Software]: Concur-
rent Programming—Parallel Programming; D.3.4 [Programming
Languages]: Processors—Compilers, Optimization

General Terms Languages, Performance, Design, Experimenta-
tion

Keywords Automatic parallelization, Separation, Speculation

1. Introduction
The microprocessor industry has committed to multicore architec-
tures. These additional hardware resources, however, offer no bene-
fit to sequential applications. Automatic parallelization is a promis-
ing approach to achieve performance on existing and new applica-
tions without additional programmer effort or application changes.

Yet automatic parallelization is not the norm. One limiting fac-
tor is the compiler’s inability to distribute work across processors
due to reuse of data structures. This reuse does not contribute to the
constructive data flow of the program, but creates contention that
prevents efficient parallel execution. A parallelizing compiler must
either respect this contention by enforcing exclusivity on accesses
to shared data structures, or ignore it and risk data races that change
program behavior.

A compiler can remove contention by creating a private copy of
the data structures for each worker process. Privatization eliminates

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/04. . . $10.00

Static Speculative

Polaris [29]
Array Expansion [10]

ASSA [14]

DSA [31] RSSA [23]
Static

PD [21]Dynamic

LRPD [22] R−LRPD [7] Privateer (this work)Speculative

Paralax [32] STMs [8, 18]Manual

P
ri
v
a
ti
z
a
ti
o
n

C
ri
te

ri
o
n

Memory Layout

Figure 1: Privatization Criterion and Memory Layout.

contention and relaxes the program dependence structure by repli-
cating the reused storage locations, producing multiple copies in
memory that support independent, concurrent access. Similarly, re-
duction techniques relax ordering constraints on associative, com-
mutative operators by replacing (or expanding) storage locations.
Prior work [7, 21, 22, 29, 32] demonstrates that privatization and
reductions are key enablers of parallelization.

The applicability of privatization systems can be understood in
two dimensions (Figure 1). A system uses the Privatization Cri-
terion [21] to decide if replacing a shared data structure would
change program behavior. To replicate object storage, a system de-
termines Memory Layout: the base address and size of memory ob-
jects. Prior work assesses the privatization criterion statically [29],
dynamically [21], or speculatively [7, 22].

However, prior work limits memory layout to arrays and scalar
variables only and fails for programs that use linked or recursive
data structures. The prevalent use of pointers and dynamic memory
allocation creates a dichotomy between static accesses and objects.
A pointer may refer to different objects of different sizes at different
times, and static analysis usually fails to disambiguate these cases.
As a result, it is difficult for a static compiler to decide which
objects to duplicate, even when it can decide which accesses are
private. Prior techniques are largely inapplicable to most C or C++
applications for this reason. Table 1 summarizes prior work.

This work proposes Privateer, the first fully automatic system
capable of privatizing data structures in languages with pointers,
type casts, and dynamic allocation. Instead of relying solely on
static analysis to determine memory layout, Privateer employs pro-
filing to characterize memory accesses at the granularity of mem-
ory objects. Using profiling information and static analysis, Priva-
teer identifies accesses to memory objects that are expected to be
iteration-private. Such objects are speculatively privatized, predict-
ing that their accesses will remain iteration-private, thereby relax-
ing program dependence structure and enabling optimization and
parallelization.

Privateer overcomes difficulties in memory layout while mini-
mizing validation overheads. The loop’s memory footprint is par-
titioned into several logical heaps according to observed access
patterns. Privateer speculates that these heaps remain separated
at runtime rather than speculating that individual memory access
pairs are independent. Workers validate this separation property au-
tonomously, requiring neither a log of accesses nor communication
with other workers. This separation property is efficiently checked

using compact metadata encoded in pointer addresses. Speculative
separation reduces sensitivity to memory layout, thus allowing Pri-
vateer to extend an LRPD-style shadow memory test [22] to ar-
bitrary objects. Privateer’s robust, layout-insensitive privatization
and reductions enable automatic parallelization of applications with
linked and recursive data structures. This work contributes:

• the first fully automatic system to support privatization and
reductions involving pointers and dynamic allocation;

• an efficient, scalable validation scheme for speculative priva-
tization and reductions based on the speculative separation
of logical heaps according to usage patterns; and,

• an application of this speculative privatization and reduction
technique to the problem of automatic parallelization.

Privateer’s transformations facilitate scalable automatic paral-
lelization on commodity shared-memory machines. No program-
mer hints are used, nor are any hardware extensions assumed. We
implement Privateer and evaluate it on a set of 5 programs. On a
24-core machine, results demonstrate a geomean whole-program
speedup of 11.4× over best sequential execution. To achieve these
results, Privateer privatized linked and recursive data structures
which are beyond the abilities of prior work. Speculation via heap
separation allows Privateer to extract scalable performance from
general purpose, irregular applications.

2. Motivation
Automatic parallelization is sensitive to the dependences in a pro-
gram. A single dependence may prevent a compiler from paral-
lelizing an entire loop. Some dependences may never manifest, yet
static analysis is unable to prove so. Speculation allows a compiler
to overcome many of the limitations of static analysis. Instead of
optimizing for a conservative worst case, a speculative compila-
tion system assumes some common case of program behavior and
optimizes accordingly [17, 19, 30]. A speculative system inserts
code to validate these assumptions at runtime and recover when
they fail. Dependence speculation is the application of speculative
methods to remove those dependences which inhibit paralleliza-
tion. However, dependence speculation is inappropriate for depen-
dences which occur frequently. Privatization targets false (anti- and
output-) dependences. Privatization succeeds even when false de-
pendences are frequent, where dependence speculation fails.

Consider the code in Figure 2a (simplified from MiBench
dijkstra [12]). Attempts to parallelize it are inhibited by frequent
false dependences incident on reused data structures. The outer
loop (Line 46) repeatedly performs Dijkstra’s algorithm. However,
the loop reuses two data structures across iterations: Q, a linked-list
work queue (Line 5), and pathcost, an array of shortest path costs
(Line 6). Although each iteration is conceptually independent, the
reuse of Q and pathcost creates false dependences that impose an
order on outer loop iterations, preventing parallelization.

These false dependences occur between every pair of iterations
of the loop. If a naı̈ve compiler were to speculate that these false
dependences never manifest, the program would misspeculate on
every iteration, and would fail to achieve scalable performance.

A privatization strategy is more appropriate for such cases. Pri-
vatization eliminates false dependences by creating a disjoint copy
of the loop’s memory footprint for each worker, enabling work-
ers to proceed independently and without synchronization. Each
worker operates on a different Q containing different linked list
nodes and on different pathcost arrays. To prove the privatization
criterion, the strategy must confirm the absence of a loop-carried
flow dependence on every pointer load and store. This has been
addressed using static analysis [29], dynamic tests [21], and spec-

ulation [7, 22] in prior work. To replace these data structures, the
privatization strategy must also determine the memory layout.

Determining the memory layout entails identifying all private
objects: Q, pathcost, and all linked list nodes. The memory lay-
out enables the system to duplicate objects and re-route memory
accesses so workers refer to their private copy. In the absence of
pointers, a variable’s source-level name uniquely identifies a mem-
ory object, allowing the compiler to determine the object’s address
and size. However, languages with pointers and dynamic alloca-
tion allow a many-to-many relationship between names and ob-
jects. Pointers refer to different objects at different times and al-
location sites produce many objects, causing the code to exhibit
different reuse patterns. Unlike related work, Privateer addresses
the complications of pointers, type casts, and dynamic allocation.

Privateer speculatively separates the program state into several
logical heaps according to the reuse patterns observed during pro-
filing. The compiler indicates this separation to the runtime system,
which in turn privatizes without concern for individual objects. By
grouping objects, a logical heap can be privatized as a whole by
adjusting virtual page tables, neither requiring complicated book-
keeping nor adjusting object addresses in a running program. All
objects of each logical heap are placed within a fixed memory ad-
dress range, allowing efficient validation of the separation property.
In the example, Q, pathcost, and all linked list nodes are accessed
privately whereas adj is only read; Privateer allocates them to dis-
tinct logical heaps of private objects and read-only objects at com-
pile time, validating this separation at runtime.

Speculative separation greatly simplifies the memory layout
problem, condensing unboundedly many objects into few heaps.
This allows Privateer to apply a speculative privatization and reduc-
tion transformation on programs with pointers, dynamic allocation,
and type casts. This removes false dependences, relaxing program
constraints, and enables scalable automatic parallelization.

3. Design
Privateer is a combined compiler-runtime system that privatizes dy-
namic memory objects efficiently and addresses several challenges
outlined in this section. The compiler system acts fully automat-
ically without any guidance from the programmer. The compiler
overcomes the limitations of static analysis by using profiling in-
formation to guide its transformations and produces code which in-
teracts with the runtime system. The runtime system provides effi-
cient mechanisms for replication of objects to support privatization
and for recovery from misspeculation.

Privateer’s privatization criterion, forbids cross-iteration flow
dependences but, unlike [22], is not limited to arrays:

Privatization Criterion: Let O be a memory object that is
accessed in a loop L. O can be privatized if and only if no read
from O returns a value written in an earlier iteration of L.

Privateer also supports a related type of privatization that in-
volves reduction operations with real flow dependences. The ac-
cumulator variable is expanded into multiple copies, each updated
independently across iterations of the loop, after which all copies
are merged to the final result. We list here our reduction criterion:

Reduction Criterion: Let O be a memory object that is
accessed in a loop L. O can be reduction-privatized if and only
if all updates to O within L are performed by a single associative
and commutative (reduction) operator, and no operation within L
reads an intermediate value from O.

The use of pointers and dynamic allocation in general purpose
programs requires privatization and reduction systems to address:

1. Rich Heap Model: the solution needs to accurately distinguish
among the many and diverse objects of the program, even when
several objects are created by one static instruction.

Technique Fully
Automatic

Supports Pointers
and Dynamic

Allocation

Privatization Reductions

Supported Not limited by Static Analysis Supported Not limited by Static Analysis
Criterion Memory Layout Criterion Memory Layout

Paralax [32] × - X - - - - -
TL2 [8], Intel STM [18] × - X - - - - -
PD [21], LRPD [22],
R-LRPD [7]

X × X X × X X ×
Hybrid Analysis [24] X × X X × X X ×
Array Expansion [10],
ASSA [14], DSA [31]

X × X × × × - -

STMLite+LLVM [17] X X X X - X × ×
CorD+Objects [27] X X X × × X × ×
Privateer (this work) X X X X X X X X

Table 1: Comparison of Privateer with privatization and reduction schemes.

1 struct node {int vx; node *next}
2 struct queue {node *head ,*tail}
3

5 queue Q;
6 int pathcost[N];
7 int adj[N][N];
8

9 void enqueueQ(int v) {
11 node* N = (node*) malloc(
12 sizeof(node));
13 N->vx = v;
16 N->next = Q.tail;
17 ...
20 Q.tail = N;
21 }
22

23 int dequeueQ(void) {
24 ...
27 qKill = Q.head;
30 v = qKill ->vx;
33 Q.head = qKill ->next;
35 free(qKill);
36 return v;
37 }
45 void hot_loop(int K) {
46 for (src=0; src < N; ++src) {
55 for (i=0; i < N; ++i)
56 pathcost[i] = infinity;
58

59 pathcost[src] = 0;
60 enqueueQ(src);
61

62 while (!emptyQ ()) {
63 v = dequeueQ ();
66 d = pathcost[v];
67 for (i=0; i < N; ++i) {
68 ncost = adj[v][i] + d;
69 if (pathcost[i] > ncost) {
73 pathcost[i] = ncost;
74 enqueueQ(i);
75 }
76 }
77 }
81 }
82 }

(a) Sequential dijkstra example.

1 struct node {int vx; node *next }
2 struct queue {node *head ,*tail }
3

4 // Reallocation (Section 4.4)
5 queue *Q;
6 int *pathcost;
7 int **adj;
8

9 void enqueueQ(int v) {
10 // Reallocation (Section 4.4)
11 node* N = h alloc(sizeof(node),
12 SHORTLIVED);
13 N->vx = v;
14 // Privacy Check (Section 4.6)
15 private read(&Q->tail, sizeof(node*));
16 N->next = Q->tail;
17 ...
18 // Privacy Check (Section 4.6)
19 private write(&Q->tail, sizeof(node*));
20 Q->tail = N;
21 }
22

23 int dequeueQ(void) {
24 ...
25 // Privacy Check (Section 4.6)
26 private read(&Q->head);
27 qKill = Q->head;
28 // Separation Check (Section 4.5)
29 check heap(qKill, SHORTLIVED);
30 v = qKill ->vx;
31 // Privacy Check (Section 4.6)
32 private write(&Q->tail);
33 Q->head = qKill ->next;
34 // Reallocation (Section 4.4)
35 h dealloc(qKill, SHORTLIVED);
36 return v;
37 }
38

39 // Reallocation (Section 4.4)
40 void before main(void) {
41 Q = h alloc(sizeof(queue), PRIVATE);
42 pathcost = h alloc(N*sizeof(int),PRIVATE);
43 adj = h alloc(N*N*sizeof(int), READONLY);
44 }

45 void hot_loop(int K) {
46 for (src=0; src < N; ++src) {
47 // Privacy Check (Section 4.6)
48 private write(&Q->head,sizeof(node*));
49 private write(&Q->tail,sizeof(node*));
50 // Value prediction
51 Q->head = NULL;
52 Q->tail = NULL;
53 // Privacy Check (Section 4.6)
54 private write(pathcost,N*sizeof(int));
55 for (i=0; i < N; ++i)
56 pathcost[i] = infinity;
57 // Privacy Check (Section 4.6)
58 private write(&pathcost[src],sizeof(int));
59 pathcost[src] = 0;
60 enqueueQ(src);
61

62 while (!emptyQ ()) {
63 v = dequeueQ ();
64 // Privacy Check (Section 4.6)
65 private read(&pathcost[v],sizeof(int));
66 d = pathcost[v];
67 for (i=0; i < N; ++i) {
68 ncost = adj[v][i] + d;
69 if (pathcost[i] > ncost) {
70 // Privacy Check (Section 4.6)
71 private write(&pathcost[i],
72 sizeof(int));
73 pathcost[i] = ncost;
74 enqueueQ(i);
75 }
76 }
77 }
78 // Value prediction
79 if(Q->head != NULL) misspec();
80 if(Q->tail != NULL) misspec();
81 }
82 }

(b) Speculatively privatized code, before parallelization. Changes are in grey.

Figure 2: Motivating example for Privateer. The original sequential application is on the left. The right shows the code after the speculative
privatization transformation, before it is automatically parallelized. Unchanged lines are consistently numbered between (a) and (b).

2. Robust Points-to Map: Instructions manipulate pointers, yet pri-
vatization replicates memory objects. A robust mapping from
pointers to objects is needed to consistently update both. In Fig-
ure 2, the system must determine the target object of pointers
loaded from queue and node objects (Lines 27 and 33).

3. Object Base, Size, Count: The duplicated storage must be at
least as large as the original. This also affects the allocation of
metadata at per-object or per-byte resolution. In Figure 2, the

system should know how many times, where, and how large it
allocates before privatizing node N in Line 11.

4. Replacement Transparency: When replacing the storage in a
running system, all pointers must remain valid. The system
cannot move privatized storage as it cannot guarantee that all
references will be updated. The system cannot even assume that
pointer values are visible in the IR because of the possibility of
“disguised” pointers [3].

Privateer overcomes these issues by speculating separation
properties of the program. In this paper, we say that an access path
is a sequence of operations which computes a pointer address, and
that two access paths are separated if the sets of objects they name
are disjoint. Separation is weaker than points-to information, since
it does not enumerate the objects referenced by an access path. Sep-
aration is weaker than alias information, since it says nothing about
two addresses within the same object. Yet separation information is
strong enough to simplify memory layout. Further, separation can
be validated at runtime without inter-worker communication.

3.1 Analysis and Transformation
The first task of the compiler is to recognize situations where pri-
vatization eliminates false dependences (and flow dependences for
reductions), thereby enabling automatic parallelization. Privateer
builds a representation of the dependence structure of the program’s
hot loops, and then employs memory and control profiling to re-
move rare and nonexistent dependences. This representation con-
tains only frequently occurring dependences. Privateer interprets
this as an optimistic view of the expected program dependences.

When the compiler discovers a hot loop that cannot be paral-
lelized due to false or flow dependences, it investigates whether the
privatization and reduction criteria apply. Privateer classifies every
memory object according to its observed usage pattern within the
loop. Based on this classification, the compiler decides if privatiza-
tion is applicable and would enable parallelization.

The second task of the compiler is to perform the privatization
transformation by inserting additional instructions to the program.
These instructions interact with the runtime system to control the
allocation of objects in memory and to validate that memory ac-
cesses match the expected patterns. The resulting speculatively pri-
vatized program is then amenable to automatic parallelization by
parallelizing transformations such as DOALL.

3.2 Runtime Support System
Traditional privatization systems do not privatize many classes
of dynamically allocated data structures since they are unable to
determine the object sizes, number, and locations. Privateer takes a
different approach. Privateer assigns each memory object to one of
several logical heaps. At runtime, those objects are allocated within
a known, fixed range for each logical heap. This simplifies the
memory layout problem, since the runtime may treat each logical
heap as a single object with known base and bound instead of many
unknown objects. Privateer may test whether a pointer address falls
within a given heap using only a few instructions. The system
replaces object storage by manipulating page maps. Replacement
transparency is satisfied since virtual addresses do not change.

Before or after the invocation of a parallel region, these logical
heaps behave as normal program memory and support any form of
access. During an invocation, Privateer changes the process’ vir-
tual page map, thus replacing the heaps’ physical pages. This al-
lows the runtime to replicate the storage for all objects in a heap,
marking them with the copy-on-write page protection. Initially, val-
ues within the private heap appear identical to those from the se-
quential region. However, the OS traps updates to the private heap
and silently duplicates those pages, thus isolating each worker’s up-
dates. The reduction heap is replaced and bytes within those pages
are initialized with the identity value for the reduction operator.

Privateer validates most speculative properties with instanta-
neous checks—they can be determined at a point in the code and
do not rely on history of previous operations. The speculative map-
ping of pointers to a particular heap can be checked by examining
only the pointer address. The speculative restriction on the lifetime
of short-lived objects can be checked at the end of each iteration.

These properties are strong enough to provide the enabling benefits
of speculation, yet induce only minimal runtime overhead.

Privacy validation is more complicated, requiring that we con-
sider all operations that access a particular private object. A chal-
lenging aspect of privacy validation is allowing reads of values live-
in to the loop. A worker who reads a live-in value must guarantee
that no worker defined that value in an earlier iteration, requiring
a flow of information among workers. The Privateer runtime sys-
tem employs a two-phase approach to reduce the communication
overhead of validation. The first phase occurs immediately, and de-
tects several cases of privacy violation without any communica-
tion among the workers. The second phase completes the valida-
tion check by handling the cases of privacy violation that require
communication. The second phase occurs during a checkpoint op-
eration (see Section 5.2).

Upon entering the parallel region, the runtime also creates a
shadow heap for each worker which has the same size as the private
heap. Each byte of data within the private heap corresponds to a
byte of metadata in the shadow heap. Privateer records metadata in
the shadow heap about the history of accesses to private memory.
This shadow heap is analogous to the shadow arrays in the LRPD
technique [22]. Each byte of metadata contains a code indicating
the history of that private byte given all information available to
a worker. In particular, metadata contains enough information to
determine whether a byte of private memory may contain a live-in
value, or if it was necessarily defined during an earlier iteration of
the parallel region. The interpretation of these codes is discussed in
Section 5.1.

Since the compiler relies on profile driven speculative paral-
lelization, the runtime system must support rollback and recovery
in case of misspeculation. Privateer provides this via checkpoint-
ing. Speculative state is collected from all workers at regular inter-
vals and validated for misspeculation. If no violations occur, then
the checkpoint is marked non-speculative and used as a recovery
point. Checkpoints are only collected and validated after a large
number of iterations. This policy reduces checkpointing and vali-
dation overheads in the common case, but discards and recomputes
a larger amount of work upon misspeculation.

4. The Privateer Analysis and Transformation
The Privateer system provides fully automatic analyses and trans-
formations to privatize the data structures used by general purpose
C and C++ applications. Figure 3 describes the compiler compo-
nent. Each step is described in the following sections.

4.1 Profiling
The Privateer system uses a novel pointer-to-object profiler to con-
nect dynamic pointer addresses with a set of object names. The pro-
filer assigns static names to the memory objects of global or con-
stant variables. The profiler names dynamic objects (e.g. malloc
or new) or stack slots according to the instruction which allocates
them and a dynamic context. The dynamic context distinguishes
dynamic instances of a static instruction by listing the function and
loop invocations which enclose that instruction.

The pointer-to-object profiler instruments the program to main-
tain a interval map from ranges of memory addresses to the name
of the memory object which occupies that space, like [34]. This in-
terval map enables the profiled program to determine the name of
the object referenced by any pointer during a profiling run. The pro-
filer instruments every pointer that cannot be mapped to a unique
object at compile time. The profiler accumulates this information
over program execution.

Finally, this profiler tracks the allocation and deallocation of
memory objects with respect to dynamic contexts. This informa-
tion allows the compiler to characterize the lifetime of objects and

Profiling
Section 4.1

Classification
Section 4.2

Privatization

Add Separation

Checks

Selection
Section 4.3

Relaxation

Applicability

Guard for

Parallelization

Heap

Assignments
Loop 1 Loop 2 Loop N...

Loop set { 1, N }

Speculative

PDG 1

Speculative

PDG 2

Speculative

PDG N

Global Heap

Assignment

Points−to

Map

Classification

Algorithms 1, 2

...

...

Hot

Loops
Memory

Flows

Biased

Branches

Unmodified Sequential IR

Speculatively Privatized IR

Replace

Allocation

Add Privacy

Checks

h_alloc(n, heap)malloc(n)

h_dealloc(n, heap)free(ptr)

ptr = def

check_heap(ptr, heap)
ptr = def

private_write(ptr)

store v,ptr
store v,ptr

private_read(ptr)

v = load ptr
v = load ptr

Sections 4.4 − 4.6

Section 4.4

Section 4.5

Section 4.6

Figure 3: Structure of the Privateer Analysis and Transformation.
distinguish between short- and long-lived objects, supporting ob-
ject lifetime speculation [13]. Short-lived objects exist only within
a single iteration of a loop.

In Figure 2, the pointer-to-object map contains the following
data. The pointer qKill on Line 27 always points to objects allo-
cated by Line 11 in one of two contexts: either enqueueQ called
at Line 60 or enqueueQ called at Line 74. All objects allocated on
Line 11 are short-lived with respect to the loop on Line 46.

Privateer uses other profilers. A trip count profiler [15] identi-
fies biased branches for control speculation (à la [5]). A memory
flow dependence profiler similar to [4] augments static analysis.
A value-prediction profiler guides value prediction speculation (à
la [11]). Finally, an execution time profiler, similar to gprof [26],
finds hot loops.

4.2 Classification
The hot loops access some objects in a restricted fashion. Using
profile information, the system classifies each object as one of
five access patterns: private, reduction, short-lived, read-only, and
unrestricted. These labels are summarized in a heap assignment,
which describes overall memory usage by mapping each object to
one of the five heaps with restricted semantics.

Algorithm 1 determines a heap assignment for each loop. First,
it calls getFootprint (Algorithm 2) to determine the read, write,
and reduction footprints of the loop. These footprints are repre-
sented as sets of memory object names and may overlap. This func-
tion accumulates the objects written by a store operation or read by
a load operation. The algorithm also identifies operation sequences
which syntactically resemble an associative and commutative re-
duction operation. Limited profile coverage has minimal effect on
Privateer’s analyses, since such code is likely removed via control
speculation.

Algorithm 1: classify(L)
let ShortLived = ∅; let Redux = ∅; let Unrestricted = ∅;
let Private = ∅; let ReadOnly = ∅;
let (ReadFootprint, WriteFootprint, ReduxFootprint) = getFootprint(L) ;
foreach object o ∈ WriteFootprint ∪ ReadFootprint do

if Profile.isShortLived(o, L) then
ShortLived = ShortLived ∪ { o } ;

end
end
foreach object o ∈ ReduxFootprint do

if (o 6∈ ReadFootprint) and (o 6∈ WriteFootprint) then
Redux = Redux ∪ { o } ;

end
end
let D = All cross-iteration memory flow dependences in L

(assuming control and memory flow profiles)
foreach dependence (a→ b) ∈ D do

let (Ra, Wa, Xa) = getFootprint(a) ;
let (Rb, Wb, Xb) = getFootprint(b) ;
let F = (Wa ∪Xa) ∩ (Rb ∪Xb) ;
Unrestricted = Unrestricted ∪ (F \ ShortLived \ Redux) ;

end
Private = WriteFootprint \ ShortLived \ Unrestricted \ Redux;
ReadOnly = ReadFootprint \ ShortLived \ Unrestricted \ Redux \ Private;
return (ShortLived, Redux, Unrestricted, Private, ReadOnly);

In Figure 2a, Privateer computes the footprint of the hot loop
(Line 46), as follows. The read set contains the global queue struc-
ture Q, the global arrays pathcost and adj, and all linked list
nodes allocated by Line 11. The write set contains Q, pathcost,
and all linked list nodes. The reduction set is empty.

Algorithm 2: getFootprint(S)
let ReadFootprint = ∅; let WriteFootprint = ∅; let ReduxFootprint = ∅;
foreach instruction I in S do

if I is of the form “r := load p” then
let O = Profile.mapPointerToObjects(p);
if (exists instruction of the form “store v, p”) and

(exists instruction of the form “v := op r, x” where
op is associative and commutative) then

ReduxFootprint = ReduxFootprint ∪ O;
else

ReadFootprint = ReadFootprint ∪ O;
end

end
if I is of the form “store v, p” then

let O = Profile.mapPointerToObjects(p);
if (exists instruction of the form “r := load p”) and

(exists instruction of the form “v := op r, x” where
op is associative and commutative) then

ReduxFootprint = ReduxFootprint ∪ O;
else

WriteFootprint = WriteFootprint ∪ O;
end

end
if I is of the form “r := call f(...)” then

recur on f;
end

end
return (ReadFootprint, WriteFootprint, ReduxFootprint)

The classification algorithm (Algorithm 1) partitions the loop’s
memory footprint across the five heaps according to access pat-
terns. If an object is allocated and freed within an iteration, classi-
fication assigns it to the short-lived heap. If the compiler does not
expect an object in the reduction set to be accessed by loads or
stores elsewhere in the loop, classification assigns it to the reduc-
tion heap. This indicates that the reduction criterion is expected to
succeed, but will still be verified at runtime via separation checks
(Section 5.1). The unrestricted heap contains objects which par-
take in a loop-carried dependence, unless those objects were al-
ready assigned to the short-lived or reduction heaps. The private

All Memory Objects

Private Heap Short−Lived Heap Read−Only Heap

global adj[][]

global pathcost[]

global Q

head

next

node @ line 11

next

node @ line 11

next

node @ line 11

tail

...

Private Object

Classification

Short−Lived Object

Classification

Read−Only Object

Classification

Static

Pointers

&Q.head qKill−>next &adj[v][i]
(line 27) (line 33) (line 68)

&pathcost[v]
(line 66)

Q.head
(line 27)

R
u
n
 T

im
e

C
o
m

p
ile

 T
im

e

{ Q, pathcost } { malloc @ line 11 } { adj }

...

Figure 4: A heap assignment for Figure 2. Privateer speculatively
separates objects into several classifications. Objects are allocated
from logical heaps for efficient validation.

heap receives all other written objects. The read-only heap receives
all other read objects. These five sets are collectively referred to as
a heap assignment.

Figure 4 shows a heap assignment for the code in Figure 2a. The
short-lived set contains all linked list nodes allocated at Line 11.
The reduction and unrestricted sets are empty (and not shown). The
private set contains the global queue structure Q and the global array
pathcost. The read-only set contains the global array adj.

4.3 Selection
The compiler selects a subset of loops to parallelize from the set
of hot loops with heap assignments. Program dependences are
computed using static analysis and then refined according to the
heap assignment:

• The logical heaps are separated: For a pair of operations o
and p whose footprints are assigned to sets of heaps ho and
hp respectively, if ho ∩ hp = ∅ then remove all memory
dependences o→ p and p→ o.

• The private, short-lived and reduction heaps eliminate loop-
carried dependences: For an operation o, if the footprint of o
is contained in the private, short-lived, and/or reduction heaps,
then for all operations x in the loop, remove all loop-carried
memory dependences o→ x and x→ o.

Additionally, dependences are refined with standard rules for
value prediction, control speculation, and I/O deferral. The result is
an optimistic view of program behavior in the expected case. This
dependence structure is passed to parallelizing transformations to
exclude inapplicable loops. The compiler selects the largest (by ex-
ecution time) set of parallelizable loops subject to the following

compatibility constraints. The compiler avoids nested parallelism:
if the compiler finds (via static analysis or profiling results) that two
loops may ever be simultaneously active, it marks the two loops
incompatible. Second, two loops are incompatible if an object is
assigned to different heaps for each loop. If two loops are incom-
patible, the compiler selects at most one of them. This selection
process yields a single heap assignment for the set of selected hot
loops.

4.4 Replace Allocation
Privateer replaces the allocation site for each object from the heap
assignment. Storage for global objects is allocated from the appro-
priate heap during an initializer which runs before main (Lines 40–
44), and is saved in a global variable (Lines 5–7). All uses of the
addresses of such objects are replaced with loads from said global
pointer. For stack allocations, the operation is replaced with an allo-
cation from the appropriate heap and a corresponding deallocation
is inserted at all function exits. Similarly, heap allocations and deal-
locations are replaced with the routines for the appropriate heap.

4.5 Add Separation Checks
The compiler inserts calls to trigger validation. To validate that a
pointer refers only to objects within the correct heap, the compiler
finds every static use of a pointer within the parallel region and
traces back to the static definition of that pointer. It inserts calls to
the check heap function, which performs a separation check (see
Section 5.1). Figure 2b shows a separation check on Line 29; other
checks are proved successful at compile time and are elided.

4.6 Add Privacy Checks
To validate that private objects never partake in loop-carried flow
dependences, the compiler finds every operation within the parallel
region which accesses an object in the private heap. It inserts a call
to private read before loads, and a call to private write be-
fore stores. These calls report address and access-size information
to the runtime system, causing the runtime to validate privacy (see
Section 5.1). In Figure 2b, Lines 15, 19 and 65 show privacy checks
inserted by Privateer.

5. The Privateer Runtime Support System
The runtime support library serves several purposes. It manages the
logical heaps and validates their speculative separation. It provides
validation of speculative privacy. It coordinates periodic check-
points and initiates recovery after a misspeculation. Parallel execu-
tion is governed by the parallelizing transformation applied to the
program after privatization. In this investigation, the parallelizing
transformation is DOALL.

Figure 5 shows a schematic time line of parallel execution with
three workers. Speculative privatization does not add explicit com-
munication between the workers, but requires periodic checkpoints,
marked as CHKn. Additionally, each worker performs small inline
misspeculation checks, denoted by grey bars. The figure shows a
misspeculation at iteration 2k + 4, followed by sequential, non-
speculative recovery. Parallel execution resumes after recovery.

5.1 Runtime Validation of Speculation
Separate Heaps: The runtime system makes heavy use of the
POSIX shared memory (shm) and memory map (mmap) facilities
to achieve the desired separation model. Since workers must up-
date their virtual memory maps independently, the Privateer run-
time system uses processes and not threads. Heaps are created via
shm open. Each process maps them into its address space via mmap
with read-only, read-write or copy-on-write protections.

The mmap facility allows the system to select a fixed, absolute
virtual address for these heaps. Privateer exploits this feature by

Recovery
 Section 5.3

Time

Parallel

Execution

Worker 1

1

4

k−2

CHK1

CHK2

2k+1

2k+1

2k+2

2k+3

2k+4

2k+5

...
...

...

Worker 2

2

5

k−1

CHK1

CHK2

2k+6

2k+2

...
...

...

Worker 3

3

6

k

CHK1

CHK2

2k+7

...
...

...

2k+4

CHK1 validated

CHK2 validated,

Recovery starts

from CHK2

W1 misspec

during CHK3

W3

continues

through

CHK2

Recovery done,

Resume parallel Parallel

Execution

Checkpoint
 Section 5.2

Inline

Validation
 Section 5.1

One Loop

Iteration

Figure 5: Example showing the worker processes during a parallel
region. Iteration 2k + 4 misspeculates, triggering a recovery.

hiding a heap tag within the heaps’ virtual addresses. Bits 44–46 of
the address hold a 3-bit heap tag, allowing the runtime to quickly
determine if a pointer references an address within the correct
heap. As a heap is subdivided by allocations, all objects within that
heap inherit its tag. This choice of bit location was selected for
compatibility with common operating systems and hardware, and
allows 16 terabytes of allocation within any heap.

The privatizing transformation inserts a heap check at each
instruction which computes a pointer address in the parallel region.
This check indicates an assumed target heap for that pointer. The
runtime tests the pointer’s heap tag via bit arithmetic, reporting
misspeculation upon mismatch. The bit patterns for the private and
shadow heaps are chosen so they differ by only one bit. For a byte at
address p within the private heap, the system computes the address
of the corresponding byte of metadata in the shadow heap with a
single bit-wise OR instruction.

Validating Short-Lived Objects: Each worker counts the
number of objects allocated and not freed from its short-lived heap.
If any of these objects is live at the end of an iteration, then lifetime
speculation is violated, and the worker reports misspeculation [13].

Validating Privacy: Privacy is validated in two phases. First,
a worker employs a fast test upon each access to private memory.
This test requires no communication with other workers, but may
fail to catch some violations. A thorough check will catch remain-
ing violations during the checkpoint operation (see Section 5.2).

Every byte of metadata contains one of four codes: live-in (0),
old-write (1), read-live-in (2), or a timestamp 3 + (i − i0) encod-
ing the iteration i after the most recent checkpoint i0. Initially, the
shadow heap contains all zero values (live-in). Privacy checks cause
the runtime system to update metadata upon every private access.
The transition rules for metadata are shown in Table 2. The simplest
cases are the most common: a write to private memory updates the
corresponding bytes of metadata with the current iteration times-
tamp; a read from private memory checks that the corresponding
bytes of metadata match the current iteration timestamp. If the pro-
gram ever reads a value that was defined by an earlier iteration, this
can be detected by the fourth rule.

To support reading live-in values, the runtime marks a live-in
byte with the code read-live-in. This indicates that a byte has been

Op. Metadata CommentBefore After
0 2 Read a live-in value.

Read

1 misspec Loop-carried flow dependence.
2 2 Read a live-in value.

α (2 < α < β) misspec Loop-carried flow dependence.
β β Intra-iteration (private) flow.
0 β Overwrite a live-in value.

Write

1 β Overwrite an old write.
2 misspec Conservative false positive.

α (2 < α ≤ β) β Overwrite a recent write.

Table 2: Metadata transitions on private accesses. β is the times-
tamp for the current iteration, and α is the timestamp for an earlier
iteration.

read, and appears to be a live-in value, but that privacy cannot
be guaranteed without communicating with other workers. Instead,
this property will be checked at the next checkpoint. If such a byte
is overwritten before the checkpoint occurs, the system will conser-
vatively report a misspeculation. Such a misspeculation may rep-
resent a false-positive. We selected this design since tests without
false positives require a separate read-iteration timestamp, doubling
the size of metadata. We did not observe false positives in practice.

These metadata codes will eventually overflow a byte. A check-
point resets the metadata range by replacing all writes before the
checkpoint (metadata α ≥ 3) with old-write (1). Privateer triggers
a checkpoint operation at least every 253 iterations.

5.2 Checkpoints
To support recovery, the speculative program periodically saves
valid program state. The runtime selects a checkpoint period k be-
fore the parallel invocation. After every k-th iteration, worker pro-
cesses copy their speculative state (the private, shadow, and reduc-
tion heaps) into a checkpoint object, as in Figure 5. This object
is allocated by the first worker to reach that iteration and retired
after the last worker reaches the iteration. The checkpoint system
maintains an ordered list of checkpoint objects, each representing
a distinct point in time, and allows arbitrarily many checkpoint ob-
jects. Workers acquire a lock on a single checkpoint object, not the
whole checkpoint system, to avoid barrier penalties. This allows a
fast worker to proceed to subsequent work units without waiting
for slow worker processes to reach the checkpoint.

As mentioned in Section 5.1, privacy is validated by a two-phase
approach. The runtime performs the second phase of validation as
each worker adds its speculative state to the checkpoint object, us-
ing the same metadata transition rules as listed in Table 2. If mis-
speculation is detected while a worker is performing a checkpoint,
that worker signals a misspeculation and aborts. Otherwise, that
checkpoint object is marked non-speculative as soon as all workers
have added their state to the checkpoint.

5.3 Recovery
If a worker detects misspeculation, it sets a global misspeculation
flag and records the misspeculated iteration number. This worker
terminates immediately, squashing all its speculative state created
since its last checkpoint.

Since workers run at different speeds, it is possible that a re-
maining worker has not yet reached the checkpoint during which
misspeculation occurred. Workers consult the global misspecula-
tion flag after each iteration. If set, each worker compares its check-
point ID bi/kc against the ID of the checkpoint which misspecu-
lated. If a worker has not yet reached the point of misspeculation,
it continues execution; otherwise it terminates. This policy reduces
wasted work upon misspeculation, as in Figure 5. If workers dis-

cover an earlier misspeculation before they terminate, they update
the earliest iteration at which misspeculation occurs, and abort.

Once all worker processes have terminated, the main process
begins non-speculative recovery. Using several calls to mmap,
the main process replaces its heaps with those from the last
valid checkpoint. The main process re-executes iterations non-
speculatively until it has passed the iteration at which the earliest
misspeculation occurred. Unless the program exits the loop during
recovery, parallel execution resumes.

6. Evaluation
Privateer is evaluated on a shared-memory machine with four 6-
core Intel Xeonr X7460 processors (24 cores total) running at 2.66
GHz with 24 GB of memory. Its operating system is 64-bit Ubuntu
9.10. The compiler is built on LLVM [15] revision 139148.

Privateer is evaluated with 5 programs that require speculative
privatization for parallelization, as described in Table 3. Programs
are selected from a set of C and C++ applications because their par-
allelization is limited by false dependences. We exclude many pro-
grams because they are parallelizable without Privateer. Some other
programs feature data structures that Privateer can successfully pri-
vatize, but whose loops cannot be parallelized with DOALL be-
cause of real loop-carried flow dependences. We exclude those as
well, since they are limited by DOALL, not by Privateer. More
powerful parallelizing transformations, such as PS-DSWP [20] will
be investigated in future work.

Specifically, we exclude 177.mesa and 462.libquantum
since they can be parallelized without the aid of speculation, and
thus we do not take credit for their performance. We exclude
164.gzip, 256.bzip2, and 456.hmmer since the compiler can-
not identify DOALL loops after Privateer’s speculation has been
applied. The compiler does not transform these codes.

Each benchmark is profiled with a training input (train). Per-
formance evaluations are measured with a different testing input
(ref). When we profile these with a third input (alt), the compiler
generates identical code, suggesting that Privateer’s analysis is rea-
sonably stable with respect to profile input.

6.1 Parallel Performance Results
Figure 6 presents performance results generated by the fully auto-
matic privatization and parallelization transform. These measure-
ments are whole application speedups relative to the best sequen-
tial performance of the original application. The sequential appli-
cations are compiled with clang -O3.

These results indicate that privatization of data structures un-
locks parallelization opportunities in these programs. Additionally,
they indicate that Privateer’s speculative separation is sufficiently
powerful to reason about and operate on the dynamically allocated
and irregular data structures present in these applications.

The dijkstra application from MiBench [12] reuses several
data structures. It maintains a table of shortest paths and linked
list of nodes whose shortest paths have changed—both as global
variables. Successive iterations of the hot loop are synchronized
by false dependences on these data structures. Privateer uses value
prediction to speculate that the linked list is empty at the beginning
of each iteration and privatizes the head node of the linked list and
the shortest path table. The nodes within the linked list are assigned
to the short-lived heap. Additionally, the hot loop includes calls to
printf that are deferred into the speculative system, so that they
may issue in any order yet commit in-order.

Privateer transforms the sequential version of the swaptions
program from PARSEC [2]. It parallelizes the hot loop in the
function worker by privatizing 17 memory objects, 15 of which
are short-lived. The short-lived objects include a large number of
vectors and matrices (arrays of pointers to row vectors) which

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

 16x

 18x

 20x

052.alvinn dijkstra swaptions enc−md5 blackscholes

S
p

ee
d

u
p

 o
v

er
 B

es
t

S
eq

u
en

ti
al

DOALL−only
Privateer

Figure 7: Enabling effect of Privateer at 24 worker processes.

are dynamically allocated at various points within worker and its
callees, and passed around indirectly through other data structures.
The LRPD-family techniques are inapplicable to this benchmark
because of the linked matrix data structures.

The 052.alvinn program is from SPEC [25]. To enable
parallelization, Privateer privatizes four stack-allocated arrays.
052.alvinn iterates over these arrays using pointer arithmetic and
passes array references to callees, making static analysis difficult.
Additionally, Privateer handles reductions on two global arrays and
as well as a scalar local variable. At 8 cores, Privateer achieves a
speedup of 5.66× on commodity hardware. OpenImpact [35] re-
ports 6.44× with the help specialized hardware extensions. This
compares favorably to STMLite+LLVM [17], which reports less
than 2× in a software-only system with 8 cores.

The enc-md5 program from Trimaran [28] computes message
digests for a large number of data sets and prints each to standard
output. Two factors limit parallelization of the programs outer loop:
false dependences on the MD5 state object and digest buffer, and
calls to printf. Privateer privatizes the state object and marks
the digest buffer as short-lived. The side effects of stream output
functions are issued through the checkpoint system and take effect
only when the checkpoint is marked non-speculative.

Privateer transforms the sequential version of blackscholes
from PARSEC [2]. In the hot loop-nest of this program, the inner
loop is embarrassingly parallel. However, the outer loop cannot be
parallelized directly because of output dependences on the pricing
array, which is allocated in a different function. Privateer privatizes
this array, allowing for parallel execution of the outer loop.

Figure 7 compares the performance of the DOALL transforma-
tion using 24 workers, with and without Privateer. “DOALL-only”
refers to a non-speculative implementation which distributes loop
iterations across worker threads, and thus does not incur checkpoint
or validation overheads. Privateer enables parallelization of hotter
loops. For 052.alvinn, DOALL-only transforms a deeply nested
inner loop. Performance gains do not outweigh the overhead of dis-
patching worker threads, and thus DOALL-only experiences slow-
down. DOALL-only does not parallelize any loops in dijkstra or
enc-md5 because of real, frequent false dependences. The hot loop
in swaptions is parallelizable but could not be proved paralleliz-
able by our static analysis. DOALL-only parallelizes a hot inner
loop in blackscholes; however, privatization allows the compiler
to parallelize a hotter loop. Privatization enables the compiler to
parallelize a single invocation, thus reducing spawn/join costs.

6.2 Overhead of the Runtime System
Privateer minimizes validation’s runtime overhead. Figure 8 presents
a breakdown of measured overheads for each program when using

Program Dynamic Replaced Static Allocation Sites ExtrasInvoc Checkpt Priv R Priv W Private Short-Lived Read-Only Redux Unrestricted
052.alvinn 200 2,600 8.2 GB 300 MB 4 0 4 3 0 -
dijkstra 1 5 84.9 GB 56.7 GB 10 3 11 0 0 Value, Control, I/O
blackscholes 1 5 0 B 4.0 GB 1 0 9 0 0 Value
swaptions 1 17 288 KB 169 KB 2 15 5 0 0 Value, Control
enc-md5 1 5 25.5 GB 30.8 GB 2 1 4 0 0 Control, I/O

Table 3: Details of privatized and parallelized programs, including number of invocations of the parallel region; total number of checkpoints
constructed; total private bytes read and written; static number of objects assigned to each heap; and additional necessary transformation
including value prediction speculation, control speculation, and deferral of I/O operations.

0x
1x
2x
3x
4x
5x
6x
7x
8x
9x

10x
11x
12x
13x
14x
15x
16x
17x
18x
19x
20x

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

F
u

lly
-A

u
to

m
a

ti
c
 W

h
o

le
-P

ro
g

ra
m

 S
p

e
e

d
u

p
o

v
e

r
B

e
s
t

O
ri
g

in
a

l
S

e
q

u
e

n
ti
a

l

Number of Worker Processes

enc-md5
blackscholes

swaptions
052.alvinn

dijkstra

Figure 6: Whole program speedups of the fully automatically parallelized code, measured with respect to the best running time of the
unmodified sequential application compiled with clang -O3. Each point is the average of three trials.

Figure 8: Breakdown of overheads on parallel performance.

4, 8, 12, 16, 20, and 24 worker processes. These numbers are nor-
malized to the total computational capacity (CPU-seconds) of the
parallel region: the number of processor cores times the duration
of the parallel invocation. In these units, perfect utilization would
be represented as 100% useful work. Overheads experienced dur-
ing the parallel region subtract from utilization and prevent linear
speedup. All times measure wall-clock time, not processor time:
they include time spent blocking and context switching. If the par-
allel region invokes more than once, these numbers are the sum
over all parallel invocations.

In the overheads figure, “Useful Work” refers to the portion of
computational capacity spent executing instructions from the orig-
inal sequential application. “Private Read” refers to the capacity
spent updating metadata in response to a read from a private object.

Similarly, “Private Write” refers to the bookkeeping for a write to a
private object. “Checkpoint” refers to the capacity spent collecting,
validating, and combining checkpoints.

Spawn refers to the unused capacity after a parallel invocation
has begun, yet before the worker processes begin execution. This
overhead is mostly determined by the latency of the operating sys-
tem’s implementation of fork. Join refers to the non-useful capac-
ity after a worker process has finished its work units, yet before the
parallel invocation has finished. This overhead is caused by four
factors: imbalance among the workers, the latency of the worker-
completed signal, the cost of installing the final non-committed
state into the main process, and the cost of committing output oper-
ations that were issued during the parallel region. These two mea-
surements are presented together as “Spawn/Join.”

Results show that parallelized applications utilize most of
the parallel resources for useful work. Both 052.alvinn and
dijkstra waste a significant amount of time joining their workers.
This is caused by an imbalance in the latency of each worker, and
a load balancing technique such as work stealing could potentially
address this inefficiency. Validation of privacy is the next largest
source of overhead. Percent of computational capacity used for pri-
vacy validation remained mostly constant as the number of workers
increased, suggesting that the absolute amount of work for privacy
validation grows with the number of workers.

6.3 Misspeculation Analysis
Privateer employs speculation to eliminate rare dependences and
thus optimizes for the common case. To reduce the risk of misspec-
ulation, Privateer interprets profiling results conservatively. No pro-
grams experienced misspeculation during evaluation. To better un-
derstand the effect of misspeculation, we inject artificial misspecu-

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

 16x

 18x

 20x

052.alvinn dijkstra swaptions enc−md5 blackscholes

S
p

ee
d

u
p

 o
v

er
 B

es
t

S
eq

u
en

ti
al

0% misspeculation
0.1% misspeculation

Figure 9: Performance degradation with misspeculation.

lation into the running application at fixed frequencies. The results
of this experiment are shown in Figure 9. We present misspecula-
tion rates as the percentage of iterations which misspeculate as op-
posed to checkpoints, since iterations are more standard. Privateer’s
recovery mechanism operates at the granularity of checkpoints (see
Section 5.2). Thus, a misspeculation rate of 0.1% causes about one
in four checkpoints to fail. For blackscholes, we increased the
input size so that the hot loop executed at least 1,000 iterations.

For most programs, these results indicate that Privateer’s per-
formance benefits are sensitive to misspeculation. Four of five pro-
grams lose half of their speedup with a misspeculation rate of 0.1%.
This suggests that Privateer requires high-confidence speculation
for performance.

7. Related Work
Paralax [32] uses privatization to enable parallelization. The au-
thors note that privatization analysis is difficult on C programs.
They propose KILL annotations to assert the absence of flow de-
pendences through a data structure, indirectly answering the priva-
tization criterion. These annotations are applied to named objects
or object referenced by a single pointer indirection. This prevents
the application of KILL to recursive data structures.

Early works on privatization [16, 29] are limited by the strength
of static analysis on the privatization criterion and memory layout
problems. The PD Test [21] reduces reliance on static analysis by
adding inspector loops to dynamically verify the privatization crite-
rion at runtime. Similarly, Hybrid Analysis [24] uses a generalized
representation for indirect array references to statically generate
predicates, which are then resolved at runtime for dynamic priva-
tization. The LRPD [22] and R-LRPD [7] Tests obviated the need
for static analysis by evaluating the privatization criterion specula-
tively. All of these techniques are evaluated on array-based codes
written in FORTRAN and cannot handle pointers, linked lists, and
other dynamic data structures.

Array Static Single Assignment (ASSA) [14] extends Static
Single-Assignment form [6] to arrays. ASSA requires that any
named memory location has exactly one definition. Repeated up-
dates are represented with new static names and joined via φ-nodes.
In this form, false dependences do not exist, and a compiler may
distribute operations across threads considering only flow depen-
dences. However, pointer indirection allows for ambiguous updates
and foils ASSA analysis. Array Expansion [10] and Dynamic Sin-
gle Assignment (DSA) [31] are similar to ASSA. Instead of creat-
ing new names, these add a new dimension to arrays representing
the new definition. Instead of inserting φ-nodes, DSA emits instruc-
tions to explicitly select the appropriate value at control join points.
Region Array SSA [23] uses partial aggregation of array regions

to reduce the runtime overhead of ASSA. These provide the same
single-assignment semantics as ASSA, and suffer from the same
applicability problems in light of unrestricted pointers and casts.
A representative DSA [31] is inapplicable to loops which contain
loads or stores from pointers.

Software Transactional Memory (STM) systems [8, 17, 18] pro-
vide isolation and consequently privatize data structures written
during a transaction. To detect conflicts, these techniques keep a
log of memory accesses for offline validation. STMLite integrates
an automatic DOALL compiler featuring several enabling transfor-
mations [17] and implemented in LLVM [15]. STMLite’s central
commit process can quickly become an execution bottleneck. The
other transactional systems are not evaluated in an automatic sys-
tem; weak static analysis may cause a large volume of unnecessary
validations, and it is unclear whether these systems scale to that
volume. None of these STMs provide speculative reduction sup-
port, and so a compiler must rely on a static criterion.

The CorD+Objects [27] compiler and STM reduce copy over-
heads by tracking speculative state of objects. To address replace-
ment transparency, the compiler transforms pointers into “double
pointers” and the runtime maintains a map between copies of an
object. This transformation assumes that all accesses conform to
the object’s declared type, but may fail due to reinterpretation casts.
Static analysis cannot always determine whether an object is ever
reinterpreted. The transformation also assumes that all pointer val-
ues are visible in the IR, but C’s weak types allow “disguised”
pointers, as discussed in [3]. Like STMs, CorD+Objects does not
support speculative reductions. Since Privateer provides replace-
ment transparency using virtual page mapping, its compiler has no
need to identify or manipulate pointer values in the IR.

Several works modify the default process memory model by
manipulating virtual memory maps. DoublePlay [33] employs the
copy-on-write mechanism to isolate different epochs of a single
process, providing a deterministic replay facility. Grace [1] imple-
ments a safe multithreading programming model to reduce devel-
opment effort for parallel programs. Behavior oriented paralleliza-
tion [9] provides a speculative execution model that resembles an
STM and features an optimized value-based misspeculation detec-
tion system. These works are intended as programmer tools to aid
the development of parallel applications, yet none automatically
parallelize applications.

8. Conclusion
Automatic parallelization is a promising strategy to deliver scalable
application performance on parallel architectures. Privateer enables
a compiler to extract more parallelism by selectively privatizing
data structures. Privateer’s heap separation enables greater appli-
cability than related techniques, and allows for efficient validation.
Privateer’s fully automatic privatization and parallelization delivers
a geomean whole-program speedup of 11.4× over best sequential
execution for 5 programs on a 24-core shared memory machine.

Acknowledgments
We thank the entire Liberty Research Group for their support and
feedback during this work. We also thank the anonymous reviewers
for their insightful comments. Additionally, we thank Andrew Ap-
pel, Gordon Stewart, Lennart Beringer, Jude Nelson and Daya Bill
for commenting on early drafts. This material is based on work sup-
ported by National Science Foundation Grant 0964328 and DARPA
contract FA8750-10-2-0253. Prakash Prabhu thanks Google, Inc.
for fellowship support. This work was carried out while Ayal Zaks
was visiting Princeton University, supported by the HiPEAC net-
work of excellence, and on leave from IBM Haifa Research Lab.

References
[1] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe

multithreaded programming for C/C++. In Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems Languages
and Applications, 2009.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, 2008.

[3] H.-J. Boehm. Simple garbage-collector-safety. In Proceedings of the
ACM SIGPLAN 1996 conference on Programming Language Design
and Implementation, pages 89–98, New York, NY, 1996. ACM.

[4] T. Chen, J. Lin, X. Dai, W.-C. Hsu, and P.-C. Yew. Data dependence
profiling for speculative optimizations. In E. Duesterwald, editor,
Compiler Construction, volume 2985 of Lecture Notes in Computer
Science, pages 2733–2733. Springer Berlin / Heidelberg, 2004.

[5] W. Y. Chen, S. A. Mahlke, and W. W. Hwu. Tolerating first level
memory access latency in high-performance systems. In Proceedings
of the 1992 International Conference on Parallel Processing, pages
36–43, Boca Raton, Florida, 1992. CRC Press.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages
and Systems, 13(4):451–490, October 1991.

[7] F. H. Dang, H. Yu, and L. Rauchwerger. The R-LRPD test:
Speculative parallelization of partially parallel loops. In Proceedings
of the 16th International Parallel and Distributed Processing
Symposium, pages 20–29, 2002.

[8] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In
Distributed Computing, pages 194–208, 2006.

[9] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software behavior oriented parallelization. In Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 223–234, New York, NY, 2007. ACM.

[10] P. Feautrier. Array expansion. In Proceedings of the 2nd International
Conference on Supercomputing, pages 429–441. ACM, 1988.

[11] F. Gabbay and A. Mendelson. Can program profiling support
value prediction? In Proceedings of the 30th annual ACM/IEEE
International Symposium on Microarchitecture, pages 270–280,
Washington, DC, 1997. IEEE Computer Society.

[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. MiBench: A free, commercially representative
embedded benchmark suite. In Proceedings of the Workload
Characterization, 2001. WWC-4. 2001 IEEE International Workshop,
pages 3–14, Washington, DC, 2001. IEEE Computer Society.

[13] H. Kim, N. P. Johnson, J. W. Lee, S. A. Mahlke, and D. I. August.
Automatic speculative DOALL for clusters. Proceedings of the
10th IEEE/ACM International Symposium on Code Generation and
Optimization, March 2012.

[14] K. Knobe and V. Sarkar. Array SSA form and its use in parallelization.
In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 107–120, 1998.

[15] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the Annual
International Symposium on Code Generation and Optimization,
pages 75–86, 2004.

[16] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array-data flow
analysis and its use in array privatization. In Proceedings of the 20th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 2–15, New York, NY, 1993. ACM.

[17] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing
sequential applications on commodity hardware using a low-cost
software transactional memory. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2009.

[18] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits,
J. Cownie, R. Geva, S. Kozhukow, R. Narayanaswamy, J. Olivier,
S. Preis, B. Saha, A. Tal, and X. Tian. Design and implementation
of transactional constructs for C/C++. In Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems Languages
and Applications, pages 195–212, 2008.

[19] C. G. Quiñones, C. Madriles, J. Sánchez, P. Marcuello, A. González,
and D. M. Tullsen. Mitosis compiler: an infrastructure for speculative
threading based on pre-computation slices. In Proceedings of the
2005 ACM SIGPLAN conference on Programming Language Design
and Implementation, pages 269–279, New York, NY, 2005. ACM.

[20] E. Raman, G. Ottoni, A. Raman, M. Bridges, and D. I. August.
Parallel-stage decoupled software pipelining. In Proceedings of
the Annual International Symposium on Code Generation and
Optimization, 2008.

[21] L. Rauchwerger and D. Padua. The Privatizing DOALL test:
A run-time technique for DOALL loop identification and array
privatization. In Proceedings of the 8th International Conference
on Supercomputing, pages 33–43, New York, NY, 1994. ACM.

[22] L. Rauchwerger and D. Padua. The LRPD test: speculative
run-time parallelization of loops with privatization and reduction
parallelization. ACM SIGPLAN Notices, 30(6):218–232, 1995.

[23] S. Rus, G. He, C. Alias, and L. Rauchwerger. Region Array SSA.
In Proceedings of the 15th International Conference on Parallel
Architectures and Compilation Techniques, pages 43–52. ACM, 2006.

[24] S. Rus, L. Rauchwerger, and J. Hoeflinger. Hybrid analysis: static
& dynamic memory reference analysis. International Journal of
Parallel Programming, 31:251–283, August 2003.

[25] Standard Performance Evaluation Corporation. http://spec.org.

[26] The GNU Project. GNU Binutils. http://gnu.org/software/binutils.

[27] C. Tian, M. Feng, and R. Gupta. Supporting Speculative Paralleliza-
tion in the Presence of Dynamic Data Structures. In ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2010.

[28] Trimaran. Trimaran Benchmarks Packages. http://trimaran.org.

[29] P. Tu and D. A. Padua. Automatic array privatization. In Proceedings
of the 6th International Workshop on Languages and Compilers for
Parallel Computing, pages 500–521, 1994.

[30] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni,
and D. I. August. Speculative decoupled software pipelining.
In Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques, pages 49–59, Washington,
DC, 2007. IEEE Computer Society.

[31] P. Vanbroekhoven, G. Janssens, M. Bruynooghe, and F. Catthoor.
A practical dynamic single assignment transformation. ACM
Transactions on Design Automation of Electronic Systems, 12,
September 2007.

[32] H. Vandierendonck, S. Rul, and K. De Bosschere. The Paralax
infrastructure: Automatic parallelization with a helping hand. In
Proceedings of the 19th International Conference on Parallel
Architecture and Compilation Techniques.

[33] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy. Doubleplay: parallelizing sequential logging
and replay. In Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operating
Systems, pages 15–26, New York, NY, 2011. ACM.

[34] Q. Wu, A. Pyatakov, A. N. Spiridonov, E. Raman, D. W. Clark, and
D. I. August. Exposing memory access regularities using object-
relative memory profiling. In Proceedings of the International
Symposium on Code Generation and Optimization. IEEE Computer
Society, 2004.

[35] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering
hidden loop level parallelism in sequential applications. In Pro-
ceedings of the 14th International Symposium on High-Performance
Computer Architecture, 2008.

