Parallelism Orchestration using
DoPE: the Degree of Parallelism Executive

Arun Raman Hanjun Kim Taewook Oh Jae W. Lee!

Princeton University
Princeton, NJ

{rarun, hanjunk, twoh, august} @princeton.edu

Abstract

In writing parallel programs, programmers expose parallelism and
optimize it to meet a particular performance goal on a single plat-
form under an assumed set of workload characteristics. In the
field, changing workload characteristics, new parallel platforms,
and deployments with different performance goals make the pro-
grammer’s development-time choices suboptimal. To address this
problem, this paper presents the Degree of Parallelism Executive
(DoPE), an API and run-time system that separates the concern of
exposing parallelism from that of optimizing it. Using the DoPE
API, the application developer expresses parallelism options. Dur-
ing program execution, DoPE’s run-time system uses this informa-
tion to dynamically optimize the parallelism options in response to
the facts on the ground. We easily port several emerging parallel
applications to DoPE’s API and demonstrate the DoPE run-time
system’s effectiveness in dynamically optimizing the parallelism
for a variety of performance goals.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.4
[Programming Languages]: Processors—Run-time environments

General Terms Design, Languages, Performance

Keywords parallelization, parallelism, dynamic, run-time, schedul-
ing, task, loop-level, nested, loop nest, pipeline, parametric, opti-
mization

1. Introduction

As multicore processors become ubiquitous, application develop-
ers and compilers must extract thread level parallelism (TLP) in
order to exploit the execution resources afforded by the hardware.
Parallelism of multiple types may exist in an application, such as
task parallelism, data parallelism, and pipeline parallelism. Much
progress has been made in methodologies and systems to extract
parallelism, even from seemingly sequential code [6, 7, 24, 25, 34,
40]. Tools such as POSIX threads (Pthreads) [33], Intel Thread-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'11, June 4-8, 2011, San Jose, California, USA.

Copyright © 2011 ACM 978-1-4503-0663-8/11/06. .. $10.00

David I. August

1 Parakinetics Inc.
Princeton, NJ

leejw @parakinetics.com

ing Building Blocks (TBB) [26], Cilk [5], OpenMP [22], and Ga-
lois [14] allow application developers to express TLP.

Many applications have parallelism in multiple loops in a loop
nest. Each loop may be parallelized by exploiting different types
of parallelism to varying extents by allocating a different number
of parallel resources (hardware threads) to each loop. The type and
extent of each loop parallelization is called the degree of paral-
lelism (DoP). Simultaneously parallelizing multiple loops can pro-
vide both scalability and latency-throughput benefits.

Unfortunately, determining the right degree of parallelism for
even a single loop, let alone multiple loops in a nest, is a compli-
cated task. Application developers or parallel run-times typically
fix the degree of parallelism of each loop statically at development-
time or run-time. This is often suboptimal in the face of several run-
time sources of performance variability that could potentially result
in leaving hardware resources idle or over-subscribed. The applica-
tion workload characteristics may vary as in the case of web ser-
vices such as search and video. The parallel platform characteris-
tics (number of cores, memory bandwidth, etc.) may vary [18, 30].
Furthermore, the performance goals may not be fixed and could be
some complex time-varying functions of energy, throughput, etc.
Together, these three sources of variability—workload characteris-
tics, platform characteristics, and performance goals—are referred
to as the execution environment of an application.

To solve the above problem, the application developer could
statically produce multiple versions of code and dynamically se-
lect a version that best fits each execution environment. Unfortu-
nately, the number of scenarios resulting from a myriad of plat-
forms, workloads, and performance goals is so large as to preclude
the possibility of incorporating all of them into statically-compiled
codes. To address the limitations of the static approach, run-time
systems have been proposed to map parallel applications to their
execution environments. Low-level substrates enable parallel li-
brary composition but do not leverage application-specific run-time
information [15, 23]. Prior work that performs adaptation by mon-
itoring application features has typically focused on a specific type
of parallelism (such as pipeline parallelism or task parallelism) and
fixed dynamic adaptation mechanisms that are tightly coupled to
the target parallelism type [4, 5, 26, 29, 30, 35, 38]. More impor-
tantly, in all known prior work, the adaptation mechanisms are re-
stricted to a single loop in a loop nest.

This paper proposes DoPE, a novel API and run-time system
that enables the separation of the concern of developing a func-
tionally correct parallel program from the concern of optimizing
the parallelism for different execution environments. The separa-
tion of concerns enables a mechanism developer to specify mech-
anisms that encode the logic to adapt an application’s parallelism

Multiple Performance

Parallelism in

Multiple Parallelism

Application Feature

Multiple Optimization

Library Goals Loop Nest Types Monitoring Mechanisms
Pthreads [33] X v v X X
Intel TBB [26] X X v X X
FDP [29] X X X v X
DoPE [This paper] v v v v v

Table 1. Comparison of various software-only parallelization libraries for general-purpose applications

configuration to meet the performance goals that are set by the ad-
ministrator. Table 1 highlights DoPE’s advantages over other paral-
lelism management libraries. With DoPE, the application developer
can expose all the parallelism in an application and express it in a
unified manner just once. Then, a run-time system adapts the ap-
plication’s parallelism configuration by monitoring key application
features and responding to changes in the application’s execution
environment. Specifically, the run-time system automatically and
continuously determines:

e which tasks to execute in parallel (e.g. what are the stages of a
pipeline)

e how many hardware threads to use (e.g. how many threads to
allocate to each stage of the pipeline)

e how to schedule tasks on to hardware threads (e.g. on which
hardware thread should each stage be placed to maximize lo-
cality of communication)

We ported several emerging parallel applications to use the
DoPE interface. Different performance goals included response
time minimization, throughput maximization, and throughput max-
imization under power constraint. DoPE automatically adapted the
application to meet the goals, without necessitating a change in
the application code by the developer. To adapt the parallelism, it
used new mechanisms proposed in this paper and also mechanisms
proposed in prior work [29, 38], demonstrating the robustness of
DoPE’s interface and the ability for a mechanism developer to im-
plement better mechanisms in the future in a non-disruptive way.

On a 24-core Intel Xeon machine, DoPE improved the re-
sponse time characteristics of four web service type applications to
dominate the characteristics of the best static parallelizations. The
throughputs of two batch-oriented applications were improved by
136% (geomean) over their original implementations. For one ap-
plication (an image search engine), three different goals—involving
response time, throughput, and power—were independently speci-
fied. DoPE automatically determined a stable and well performing
parallelism configuration operating point in all cases.

The primary contributions of this work are:

e An API that separates the concern of correct specification of an
application’s parallelism from the concern of optimization of
the application’s execution in a variety of environments

e A smart run-time system that enables the interface and monitors
application execution to dynamically adapt the parallelism in
program loop nests by means of suitable mechanisms in order
to meet specified performance goals

The rest of this paper is organized as follows. The need for
dynamic adaptation and separation of concerns is first motivated,
followed by a description of DoPE’s interfaces for the application
developer, mechanism developer, and administrator. Various mech-
anisms that were implemented are described, followed by an eval-
uation of the DoPE system and a discussion of related work.

2. Motivation

A parallel application’s execution environment consists of the ap-
plication workload characteristics, platform characteristics, and

performance goals. Variability in any of these parameters can ne-
cessitate dynamic adaptation of parallelism in order to meet the
specified performance goal. The following video transcoding ex-
ample concretely demonstrates the impact of workload character-
istic variability.

Example: Video Transcoding Video sharing websites such as
YouTube, Google Video, and Dailymotion transcode user submit-
ted videos on their servers. Figure 1 shows the parallelism in video
transcoding using x26 4, an implementation of the popular H.264
standard [39]. Each video may be transcoded in parallel with oth-
ers. Furthermore, a single video may itself be transcoded in par-
allel by exploiting parallelism across the frames in the video in a
pipelined fashion. <DoPyuter, DoP;nner > represents the type of
parallelism of, and number of threads assigned to, the outer (inter-
video) and inner (intra-video) loops in the loop nest. Examples of
types of parallelism are DOALL and pipeline (PIPE) [1]. Statically
fixing the DoP assigned to each loop may not be optimal for a given
performance goal in all execution environments. To demonstrate
this, we measured throughput and execution time on a 24-core ma-
chine with Intel Xeon X7460 processors. User requests were simu-
lated by a task queueing thread with arrivals distributed according
to a Poisson distribution. The average system load factor is defined
as the average arrival rate of tasks (videos to be transcoded) divided
by the maximum throughput sustainable by the system.

Figure 2(a) shows that exploiting intra-video parallelism pro-
vides much lower per-video transcoding execution time than when
only the outer loop is parallelized. T¢zec is improved up to a maxi-
mum of 6.3x on the evaluation platform. This speedup is achieved
when 8 threads are used to transcode each video. Figure 2(b), how-
ever, shows the dependency of throughput on the application load.
At heavy load (load factor 0.9 and above), turning on intra-video
parallelism actually degrades throughput. This is due to the inef-
ficiency of parallel execution (a speedup of only about 6x on 8
threads at load factor 1.0) caused by overheads such as thread cre-
ation, communication, and synchronization.

This experiment shows that the usual static choices of paral-
lelism configuration are not ideal across all load factors for both
execution time and throughput. In other words, there is a trade-
off between the two. This tradeoff impacts end user response time
which is the primary performance metric of service oriented ap-
plications. Equation 1 is helpful to understand the impact of the
execution time/throughput tradeoff on response time. The time to
transcode a video is the execution time, Teze.. The number of
videos transcoded per second is the throughput of the system,

Read Transform Write

Transcoded
output

‘. DOPouter =
7(NUM_OUTER
_THREADS,

DOALL)

Figure 1. Two-level loop nest in video transcoding: Across videos
submitted for transcoding and across frames within each video

a

<(24,DOALL),(1,SEQ)> B
<(3,DOALL),(8,PIPE)> @

=
S
L

Static Oracle ==

w
S

1 o R T E)g,.

)
S

Crossover from optimizing latency]
to optimizing throughput 4

=

‘ ‘] ‘ ‘
. —~
2 30 {-<@4.DOALL),(1.SEQ)> &~ 3 | <(4.DOALL).(1.SEQ)> B
8, | <G.DOALL).(8 PIPE)> ~e- 2 08 1-<(3.DOALL),(8.PIPE)> &~
s B—8——8 -8 85 8 5 o 4 &
= 15 \:
g aOA
g 2
‘é‘ 10 %D
2 g2
]
= =
0 0

<6 4> <4,6>

Response Time (secs)

<3.8> 3.8> 38> <38> <3.8>

=)

S
N
i
ol
o

04 06 0.8 1
Normalized load on system

(a) Execution Time

0.4 0.6 0.8 1
Normalized load on system
(b) Throughput

0.2

IS}

04 06 0.8 1
Normalized load on system
(c) Response Time

Figure 2. Variation of (a) execution time and (b) throughput with load factor and parallelism configuration in a video transcoding application
on a 24-core Intel Xeon machine; (c) impact of throughput and execution time on end user response time; an oracle achieves the best response
time characteristic by continuously varying DoP with load (ideal parallelism configuration for each load factor is shown)

Throughput. The number of outstanding requests in the system’s
work queue is the instantaneous load on the system, g(t).

t
Tresponse(t) = Tezec(DOP) + ThTOUgZ;Zt(DOP) (D

The response time of a user request, Tresponse, 1 the time in-
terval from the instant the video was submitted for transcoding (at
time ¢) to the instant the transcoded video is output. Tresponse
has two components: wait time in the work queue until the re-
quest reaches the head of the queue, and execution time, Tezec.
At light to moderate load, the average arrival rate is lower than the
system throughput. Consequently, the wait time will tend to zero,
and Tresponse Will be determined by Tepec. Assuming reasonably
efficient intra-video parallelism, increasing the DoP extent of the
inner loop reduces Tezec and in turn Thesponse. In other words,
in this region of operation, <DoP,uter, DoP;nner > must be op-
timized for execution time (DOPinner = (8, PIPE)). At heavy
load, T'esponse 1S dominated by the wait time in the work queue
which is determined by the system throughput. In this region of op-
eration, DoP;,ner must be set to a value that optimizes throughput
(DoPinner = (1, SEQ)). Figure 2(c) presents experimental valida-
tion of the described response time characteristic. The same figure
also shows that a mere “turn inner parallelism on/off” approach is
suboptimal; an oracle that can predict load and change DoP contin-
uously achieves significantly better response time.

In addition to workload characteristics, platform characteris-
tics including number of hardware contexts, memory space, etc.
may vary. Further, the same system (application+platform) may
be called upon to maximize system utility with a variety of per-
formance goals involving energy, throughput, etc. If the applica-
tion developer were tasked with matching application code to the
variety of dynamic execution environments that might arise, there
would be a combinatorial explosion in the number of versions of
application code. Each version would remain ad hoc as the appli-
cation is deployed on newer platforms and is used in the context of
different performance goals.

Separation of Concerns To address the explosion of developer
effort and code versions, the task of expressing application paral-
lelism must be separated from the task of adapting that parallelism
to specific execution environments. Further, an administrator must
be able to specify the current performance goal, and the application
must adapt itself to meet the goal. Such a separation of concerns
would enable:

e application developers to focus on functional correctness of the
parallel application

e administrators to specify arbitrary performance goals involving
performance, power, etc.

e mechanism developers to implement parallelism adaptation
mechanisms that meet the specified performance goals

Table 1 evaluates existing choices for enabling such a separation
of concerns. Using Pthreads, a developer specifies a concrete, un-
changing parallelism configuration, or codes an ad hoc adaptation
mechanism for every new execution environment. Intel TBB [26]
and similar libraries [5, 22] support task parallelism for indepen-
dent tasks and their schedulers optimize only for throughput. Feed-
back Directed Pipelining (FDP) implements an adaptation mecha-
nism tied to throughput maximization for a single loop in the appli-
cation [29]. In summary, these libraries support only a single per-
formance goal, and closely couple the goal with a specific mecha-
nism to adapt parallelism in order to meet the goal.

DoPE enables an application developer to express common
paradigms of nested parallelism in a unified fashion. DoPE en-
ables an administrator to specify different performance goals for
the same application. DoPE enables a mechanism developer to im-
plement multiple mechanisms that reconfigure application paral-
lelism to meet a specified performance goal. The application devel-
oper needs to write the application just once, and the application
executes robustly across multiple scenarios of use, platforms, and
workloads.

3. DoPE for the Application Developer
3.1 DoPE API

DoPE presents a task-oriented interface to the application devel-
oper. A task consists of a template function that abstracts the con-
trol for creating dynamic instances of each task, function objects
(functors) that encapsulate the task’s functionality and expose ap-
plication level information, and a descriptor that describes the par-
allelism structure of the task. Figure 3 defines the Task type and
the types from which it is composed.

1 Task = {control: TaskExecutor, function: Functor,

2 load: LoadCB, desc: TaskDescriptor,

3 init: InitCB, fini: FiniCB}

4 TaskDescriptor = {type: TaskType, pd: ParDescriptor[]}
5 TaskType = SEQ | PAR

6 ParDescriptor = {tasks: Task[]}

7 TaskStatus = EXECUTING | SUSPENDED | FINISHED

Figure 3. DoPE type definitions

TaskExecutor DOoPE provides the control flow abstraction
shown in Figure 4(a). Loop exit is determined by status (line 7
in Figure 4(a)). The abstraction is templated on the Functor type
that encapsulates a task’s functionality.

[Method

Description

TaskStatus Task::begin()

Signal DoPE that the CPU intensive part of the task has begun; DoPE returns
task status

TaskStatus Task::end() Signal DoPE that the CPU intensive part of the task has ended; DoPE returns
task status
TaskStatus Task::wait () Wait until child tasks complete; DoPE returns status of master child task

DoPE* DoOPE::create (ParDescriptor* pd)

Launch parallel application described by specified parallelism descriptor un-
der the DoPE run-time system

void DoPE: :destroy (DoPEx dope)
end

Finalize and destroy the DoPE run-time system; wait for registered tasks to

Table 2. DoPE API

1 template <Functor> 1 class Functor{

2 void TaskExecutor(Functor 2 ...//Capture local variables
3 Function){ 3

4 . 4 ... //Constructor

5 while(true) { 3

6 6 TaskStatus operator()(){
7 TaskStatus status = 7 ... /Task function body
8 Function(); 8 return taskstatus;

9 9 }

10} 10 }:

11} 11

(a) Control flow abstraction (b) Functor for task functionality

Figure 4. Separation of task’s control and functionality in DoPE

Functor The developer must implement a functor that encap-
sulates the desired functionality of a task. The functor binds the
local variables of the original method containing the parallelized
loop as member fields (line 2 in Figure 4(b)). At run-time, a task
could be either executing, suspended, or finished. The functor must
return the status of the task after each instance of the task (line 8 in
Figure 4(b)). In particular, when a loop exit branch is to be taken,
the functor must return FINISHED; otherwise, the functor must re-
turn EXECUTING. Combined with the control flow abstraction in
Figure 4(a), the control flow structure of the original loop is dupli-
cated. The functor can also return SUSPENDED—its discussion is
deferred until Section 3.2.

LoadCB Section 2 described the importance of application fea-
tures such as workload to determine the optimal parallelism config-
uration for a given performance goal. To capture the workload on
each task, the developer implements a callback functor that when
invoked returns the current load on the task.

InitCBand FiniCB To restart parallel execution from a glob-
ally consistent program state after DoPE reconfigures parallelism,

DoPE requires the programmer to implement the InitCB (Fini—
CB) functor that is invoked exactly once before (after) the task is
executed.

TaskDescriptor A task can be sequential (SEQ) or parallel
(PAR). A parallel task’s functionality can be executed by one or
more threads. In other words, the Functor () method (lines 6-9
in Figure 4(b)) can be invoked concurrently by multiple threads.
To enable description of nested parallelism, a task can specify one
or more parallelism descriptors (ParDescriptor). Specifying
more than one descriptor exposes a choice to DoPE which at run-
time chooses the optimal parallelism configuration (described by
the corresponding ParDescriptor).

ParDescriptor A parallelism descriptor is defined recur-
sively in terms of Tasks. A ParDescriptor is an array of
one or more tasks that execute in parallel and potentially interact
with each other (line 6 in Figure 3).

1 void Transcode(){

Q= ing, outq;

Videox input, xoutput;

while(true){
*input = inq—deque();
output = transcode(input);
outq—-enqueue(xoutput);

O 0NN R W

—

Figure 5. Outer loop in x264 video transcoding

Putting it all together Figure 5 shows the outer loop code in x264
video transcoding. Figure 6 shows the transformation of the loop by
instantiation of the DoPE types discussed above. In Figure 6(a), du-
plicated code from the original loop in Figure 5 is shown in bold.
Referring to Figure 1, the outer loop task can itself be executed

1 class TranscodeFunctor { 1 class TranscodeLoadCB{ 1 TaskDescriptor 1 void Transcode(){
2 //Capture local variables 2 //Capture local variables 2 xreadTD(SEQ, NULL), 2 Queuex inq, *outq;
3 Queuex& ing; 3 Queuex& ing; 3 xtransformTD(PAR, NULL), 3 Taskx task
4 Queuex& outq; 4 Queuex& outq; 4 xwriteTD(SEQ, NULL); 4 (TranscodeFunctor(ing, outq),
5 ...//Constructor 5 ...//Constructor 5 ..//Create tasks 5 TranscodeLoadCB(ing, outq),
6 TaskStatus operator()(){ 6 float operator()(){ 6 /lusing descriptors 6 outerTD);
7 Video* input, *output; 7 //Return occupancy 7 ParDescriptor 7 MTaskExecutor<QuterLoopFunctor>
8 *input = inq—deque(); 8 return inq—size(); 8 sinnerPD({readTask, 8 //is used automatically by DoPE
9 output = transcode(input); 9 } 9 transformTask, 9}
10 outq—enqueue(*output); 10 }; 10 writeTask }); 10
11 return EXECUTING; 11 11 TaskDescriptor 11
12 12 12 xouterTD(PAR, {innerPD}); 12
13 }; 13 13 13

(a) Functionality

(b) Workload

(c) Descriptor (d) Task

Figure 6.

Task definition using DoPE

in a pipeline parallel fashion. Figure 6(c) shows the definition of
the outer loop task descriptor in terms of the inner loop paral-
lelism descriptor. Note that the process of defining the functors is
mechanical—it can be simplified with compiler support.

3.2 Using the API: A Video Transcoding Example

A developer uses the types in Figure 3 and associated methods in
Table 2 to enhance a parallel application using DoPE. Figure 7
describes the port of a Pthreads based parallelization (column 1)
of the video transcoding example from before to the DoPE API
(column 2). Code that is common between the Pthreads version
and the DoPE version is shown in bold.

Step 1: Parallelism Description In the Pthreads parallelization,
lines 4-7 create NUM_OUTER threads that execute the Transcode
method. In the Transcode method, a thread dequeues work
items (videos) from the work queue (line 14), transcodes them
(lines 15-25), and enqueues the transcoded items to the output
queue (line 26). Each video transcoding can itself be done in par-
allel in a pipelined fashion. For this, the Transcode method
spawns NUM_INNER threads to execute the pipeline. One thread
each executes Read and Write, and one or more threads execute
Transform. A common practice is to set both NUM_OUTER and
NUM_INNER statically based on profile information [21]. Section 2
already presented the shortcomings of this approach—to operate
optimally, an application must dynamically change its parallelism
configuration as the execution environment changes.

In the DoPE parallelization, the application’s parallelism is de-
scribed in a modular and bottom-up fashion. Line 4 gets the task
definition of the outer loop by invoking Transcode_getTask.
To encode nested parallelism, the Transcode_get Task method
specifies that Transcode can be executed in parallel using the

parallelism descriptor pd (lines 12-17 in Transcode_getTask).

(a) Parallelization using POSIX threads

Line 5 in transcodeVideos creates a parallelism descriptor for
the outer loop.

Step 2: Parallelism Registration Line 6intranscodeVideos
registers the parallelism descriptor for execution by DoPE by in-
voking DoPE: : create. Line 7 waits for the parallel phase of the
application to finish before freeing up execution resources by in-
voking DoPE: :destroy.

Step 3: Application Monitoring Each task marks the begin and
end of its CPU intensive section by invoking Task: :begin and
Task: : end, respectively. DoPE records application features such
as task execution time in between invocations of these methods. To
monitor per-task workload, the developer implements LoadCB for
each task to indicate the current workload on the task. The callback
returns the current occupancy of the work queue in the case of the
outer task (line 26), and the input queue occupancies in the case
of Transform (line 62) and Write (line 75). The callbacks are
registered during task creation time.

Step 4: Task Execution Control If a task returns EXECUTING,
DoPE continues the execution of the loop. If a task returns FINISH-
ED, DoPE waits for other tasks that are at the same level in the loop
nest to also return FINISHED. A task can explicitly wait on its
children by invoking Task: :wait. Exactly one task in each par-
allelized loop is assigned the role of the master task (the first task
in the array of tasks registered in the parallelism descriptor). In
the running example, the task corresponding to Transcode is the
master task for the outer loop and the task corresponding to Read
is the master task for the inner loop. Invoking Task: :wait on
task (line 17) returns the status of the master child task.

Step 5: Task Yielding for Reconfiguration By default, DoPE re-
turns EXECUTING when either Task: :begin or Task: :end

(b) Parallelization using DoPE

(1) Run-time initialization

1 #include <pthread.h>
2 void transcodeVideos() {

1 #include <dope>

(2) Transcoding of an individual video clip

10 void* Transcode(void* arg) {

2 void transcodeVideos() {

10 class TranscodeFunctor {

Task* outerTask = Transcode getTask(ing, outq);
ParDescriptor* outerPD = new ParDescriptor({outerTask});

DoPE::destroy(dope); // Wait for tasks to finish

3 Q*ing, *outq; 3 Q¥inq, *outq;

4 pthread t threadsyNUM_OUTER]; 4

5 for(i=0;i<NUM_OUTER;it+) { 5

6 pthread_create(threads[i], attr, Transcode, 6 DoPE* dope = DoPE::create(outerPD);
7 new ArgT(inq, outq)); | 7

8 3} 8}

9} 9

10 Task* Transcode_getTask(Q* inq, Q* outq) {

11 Q* inq = (ArgT*)arg->ing; 11 Task* task; //This functor's task 11 TranscodeFunctor* func = new TranscodeFunctor(ing,outq);
12 Q* outq = (ArgT*)arg->outq; 12 ... //Capture local variables 12 ParDescriptor* pd = new ParDescriptor

13 for(;;) { 13 ... //Constructor 13 ({Read_getTask(func->ql),

14 *input = ing->dequeue(); 14 TaskStatus operator()() { 14 Transform_getTask(func->ql1, func->q2),

15 ... //Initialize q1 and q2 15 *input = inq->dequeue(); 15 Write _getTask(func->q2)});

16 pthread_t threadsf]NUM_INNER]; 16 ... /Initialize q1 and q2 16 // Note hierarchical description of parallelism

17 pthread_create(threads[0], attr, Read, 17 status = task->wait(); 17 TaskDescriptor* td = new TaskDescriptor(PAR, {pd});

18 new ArgR(input, q1)); 18 if (status == SUSPENDED) 18 Task* task = new Task(func, new TranscodeLoadCB(inq),
19 for (i=1;i<NUM_INNER -1 ;i++) { |19 return SUSPENDED; 19 td, NULL, NULL);

20 pthread_create(threads[i], attr, 20 outq->enqueue(*output); 20 func->task = task;

21 Transform, new ArgTr(ql, q2)); |21 return EXECUTING; 21 return task;

22 } 22} 22}

23 pthread_create(threadsf]NUM_INNER-1], |23 friend Task* Transcode_getTask(...); 23 class TranscodeLoadCB {

24 attr, Write, new ArgW(q2, output)); (24 }; 24 Q*ing;

25 ... // Join threads 25 25 TranscodeLoadCB(Q¥* inq) : inq(inq) {}

26 outg->enqueue(*output); 26 26 double operator()() {return inq.size();}

27 %} 27 27 };

28} 28 28

Figure 7. Comparison of parallelization using POSIX threads and DoPE—continued on next page

(3) Stages of pipeline to transcode an individual video clip

29 void* Read(void* arg) { 29 class ReadFunctor {

29 Task* Read_getTask(Q* ql) {

30 ... //Getinput and ql from arg 30 Task* task; /This functor's task 30 ReadFunctor* func = new ReadFunctor(ql);

31 for(;) { 31 ...//Capture local variables 31 TaskDescriptor* td = new TaskDescriptor(SEQ, NULL);
32 frame = readFrame(*input); 32 ...//Constructor 32 Task* task = new Task(func, NULL, td, NULL,

33 if (frame == NULL) break; 33 TaskStatus operator()() { 33 new ReadFiniCB(ql));

34 ql->enqueue(frame); 34 status = task->begin(); 34 func->task = task;

35 % 35 if (status == SUSPENDED) 35 return task;

36 ql->enqueue(NULL); 36 return SUSPENDED; 36}

37} 37 frame = readFrame(*input); 37

38 38 if (frame == NULL) 38 class ReadFiniCB {

39 39 return FINISHED; 39 Q*ql;

40 40 task->end(); 40 ReadFiniCB(Q* q1) : ql(ql) {}

41 41 ql->enqueue(frame); 41 void operator()() {q1->enqueue(NULL);};

42 42 return EXECUTING; 42},

43 43} 43

44 44 friend Task* Read getTask(...); 44

45 453, 45

46 void* Transform(void* arg) { 46 class TransformFunctor { 46 Task* Transform_getTask(Q* ql, Q* q2) {

47 ... //Get ql from arg 47 Task* task; //This functor's task 47 TransformFunctor* func = new TransformFunctor(q2);
48 for(;;) { 48 ... //Capture local variables 48 TaskDescriptor* td = new TaskDescriptor(PAR, NULL);
49 frame = q1->dequeue(); 49 ... //Constructor 49 Task* task = new Task(func, new TransformLoadCB(ql),
50 if (frame == NULL) break; 50 TaskStatus operator()() { 50 td, NULL, new TransformFiniCB(q2));
51 frame = encodeFrame(frame); 51 frame = q1->dequeue(); 51 func->task = task;

52 q2->enqueue(frame); 52 if (frame == null) 52 return task;

53} 53 return FINISHED; 53}

54 g2->enqueue(NULL); 54 status = task->begin(); 54 class TransformFiniCB {

55} 55 frame = encodeFrame(frame); 55 Q*q2;

56 56 status = task->end(); 56 TransformFiniCB(Q* q2) : q2(q2) {}

57 57 q2->enqueue(frame); 57 void operator()() {q2->enqueue(NULL);}
58 58 return EXECUTING; 581%;

59 59 59 class TransformLoadCB {

60 60 friend Task* Transform_getTask(...); 60 Q*ql;

61 61}; 61 TransformLoadCB(Q* ql) : ql(ql) {}

62 62 62 double operator()() {return ql.size();}

63 63 63 };

64 void* Write(void* arg) { 64 class WriteFunctor { 64 Task* Write getTask(Q* q2) {

65 ... //Get q2 and output from arg 65 Task* task; /This functor's task 65 WriteFunctor* func = new WriteFunctor(ql);
66 for(;;) { 66 ...//Capture local variables 66 TaskDescriptor* td = new TaskDescriptor(SEQ, NULL);
67 frame = dequeue(q2); 67 ...//Constructor 67 Task* task = new Task(func, new WriteLoadCB(q2), td,
68 if (frame == NULL) break; 68 TaskStatus operator()() { 68 NULL, NULL);
69 writeFrame(output, frame); 69 frame = q2->dequeue(); 69 func->task = task;

70} 70 if (frame == null) 70 return task;

71} 71 return FINISHED; 71}

72 72 status = task->begin(); 72 class WriteLoadCB {

73 73 writeFrame(output, frame); 73 Q*q2;

74 74 status = task->end(); 74 WriteLoadCB(Q* q2) : q2(q2) {}

75 75 return EXECUTING; 75 double operator()() {return q2.size();}

76 76} 76 };

77 77 friend Task* Write getTask(...); 77

78 78 }; 78

Figure 7. Comparison of parallelization using POSIX threads and DoPE

is invoked. When DoPE decides to reconfigure, it returns SUSPEN—
DED. The application should check this condition (lines 35-36 in
ReadFunctor), and then enter a globally consistent state prior
to reconfiguration. The FiniCB callbacks are used for this pur-
pose. In this particular example, Read notifies Transform (via
the ReadF iniCB callback) which in turn notifies Write (via the
TransformFiniCB callback). The notifications are by means
of enqueuing a sentinel NULL token to the in-queue of the next
task. Note by comparing the Pthreads (lines 36 and 54) and DoPE
versions (lines 41 and 57) that the developer was able to reuse the
thread termination mechanism from the Pthreads parallelization
to implement the FiniCBs. InitCB callbacks are used symmet-
rically for ensuring consistency before the parallel region is re-
entered after reconfiguration. The video transcoding example does
not require any InitCB callbacks to be defined.

3.3 Summary

In the Pthreads based parallelization, the developer is forced to im-
plement a concrete, unchanging configuration of parallelism. In the
DoPE based parallelization, the developer declares the parallelism
structure of the program, while deliberately not specifying the ex-
act parallelism configuration. This underspecification allows DoPE
to adapt parallelism to determine the optimal configuration at run-
time. While the API has been described for use by a developer, a
parallelizing compiler could also target the API in the same way as
it targets Pthreads.

4. DoPE for the Administrator

The administrator specifies a performance goal that includes an ob-
jective and a set of resource constraints under which the objective
must be met. Examples of performance goals are “minimize re-
sponse time” and “maximize throughput under a peak power con-

straint”. The administrator may also invent more complex perfor-
mance goals such as minimizing the energy-delay product [9], or
minimizing electricity bills while meeting minimum performance
requirements [19]. DoPE aims to meet the performance goals by
dynamically adapting the configuration of program parallelism.

A mechanism is an optimization routine that takes an objective
function such as response time or throughput, a set of constraints
including number of hardware threads and power consumption,
and determines the optimal parallelism configuration. The admin-
istrator provides values to a mechanism’s constraints. An example
specification by the administrator to a mechanism that maximizes
throughput could be “24 threads, 600 Watts” thereby instructing
the mechanism to optimize under those constraints. In the absence
of a suitable mechanism, the administrator can play the role of a
mechanism developer and add a new mechanism to the library.

5. DoPE for the Mechanism Developer

Figure 8 shows the DoPE system architecture. The DoPE-Executive
is responsible for directing the interactions between the various
system components. DoPE maintains a Thread Pool with as many
threads as constrained by the performance goals. DoPE uses mech-
anisms to adapt parallelism in order to meet the specified goals.

There are two main information flows when an application is
launched. First, the application registers its parallelism descriptors
(expressed by the application developer). Second, the administra-
tor specifies the performance goals. The DoPE run-time system
then starts application execution. During execution, it monitors and
adapts the parallelism configuration to meet those goals.

Referring to Figure 8, DoPE monitors both the application (A)
and platform (B). Section 3.2 already described the methods that
enable DoPE to monitor application features such as task execu-
tion time and task load. DoPE uses per thread timers (updated us-
ing calls to clock_gettime) to obtain task execution time. To
enable DoPE to monitor platform features such as number of hard-
ware contexts, power, temperature, etc., the mechanism developer
registers a feature with an associated callback that DoPE can invoke
to get a current value of the feature. Figure 9 shows the registration
API. For example, the developer could register “SystemPower”
with a callback that queries the power distribution unit to obtain the
current system power draw [2].

Application Application Feature§ Application
Developer (Workload, task exec. time) ' Parallelism
~Desaribes T (A) ' i Descriptor
escribes
Parallelism ; ' '
v @1 3
o Suspend: Ack ! DoPE
echanism ' f
Developer
Mechanism| (1) New .| (4) Launch Thread
Implements | [CoamSML | L) e ~ Executive | \--aunch 4
Mrgghzxrﬁz?n: Library Parallelism Executive New Tasks Pool
Config.
Administrator T 5
Sets Mechanism i Execute ;
Parameters T
'(B) '
Platform Features
i: SDl;rl]i;mic (Power, Temperature, ...) Platform

Figure 8. Interactions of three agents around DoPE. The appli-
cation developer describes parallelism using DoPE just once. The
mechanism developer implements mechanisms to transform the
parallelism configuration. The administrator sets the constraint pa-
rameter values of the mechanism. (A) and (B) represent continuous
monitoring of application and platform features. (1)—(5) denote the
sequence of events that occurs when parallelism reconfiguration is
triggered.

1 //Application features

2 double DoPE::getExecTime(Tasks task);

3 double DoPE::getLoad(Tasks task);

4 //Platform features

5 void DoPE::registerCB (string feature, Functorx getValueOfFeatureCB);
6 void* DoPE::getValue(string feature);

Figure 9. DoPE Mechanism Developer API

The primary role of the mechanism developer is to implement
the logic to adapt a parallelism configuration to meet a performance
goal by using the information obtained via monitoring. For this,
DoPE exposes the query API shown in Figure 9 to the mecha-
nism developer. Figure 10 shows a mechanism that can enable a
“Maximize Throughput with N threads” performance goal. Every
mechanism must implement the reconfigureParallelism
method. The method’s arguments are the descriptor of the current
parallelism configuration and the maximum number of threads that
can be used to construct a new configuration. The new configura-
tion is returned to the caller (DoPE-Executive).

1 ParDescriptors Mechanism::reconfigureParallelism

2 (ParDescriptor pd, int nthreads){
3 float total_time = 0.0;

4 // 1. Compute total time

5 foreach (Tasks task: pd—tasks) {
6 total_time += DoPE::getExecTime(task);
7

8

// 2. Assign DoP proportional to execution time;
9 //recurse if needed
10 foreach (Tasks task: pd—tasks) {
11 task—dop = nthreads * (DoPE::getExecTime(task)/total_time);
12 ParDescriptors innerPD = task—pd;
13 if (innerPD) {

14 task—pd = reconfigureParallelism (innerPD, task—dop);
15 }

16 }

17 ...// 3. Construct new configuration — Omitted

18 return newPD;

19}

Figure 10. Mechanism to maximize throughput—Assigns DoP to
each task proportional to task’s execution time

The intuition encoded by the mechanism in Figure 10 is that
tasks that take longer to execute should be assigned more re-
sources. In step 1, the mechanism computes total execution time
(lines 4-7) so that each task’s execution time can be normal-
ized. In step 2, the mechanism assigns a DoP that is propor-
tional to the normalized execution time of each task (line 11).
reconfigureParallelism is recursively invoked to assign
DoPs to the inner loops in the loop nest. For each loop, a new con-
figuration is constructed with the new task descriptors and returned
to the parent descriptor. For brevity, this last step is omitted.

6. DoPE Operation Walk-through

Once a mechanism is selected, DoPE uses it to reconfigure paral-
lelism. The Executive triggers a parallelism reconfiguration in re-
sponse to changes in the execution environment such as increase
in workload. When reconfiguration is triggered, the following se-
quence of events occurs (refer to Figure 8):

1. The Mechanism determines the optimal parallelism configura-
tion, which it conveys to the Executive.

2. The Executive returns SUSPENDED to invocations of
Task::begin and Task: :end in order to convey to the
application DoPE’s intent of reconfiguration.

3. In response, the application and DoPE steer execution into a
suspended state by invoking the FiniCB callbacks of all the
tasks.

4. The Executive then schedules a new set of tasks for execution
by the Thread Pool—the task set is defined by the new paral-
lelism configuration specified by the Mechanism.

5. The Thread Pool executes the new tasks on the Platform.

7. Performance Goals and Mechanisms Tested

One advantage of the separation of concerns enabled by the DoPE
interface is that a mechanism developer can implement new mecha-
nisms and add them to the library in order to better support existing
performance goals or to enable new ones, without changing the ap-
plication code. The separation of concerns also enables reuse of
mechanisms across many parallel applications. This separation al-
lowed us to implement and test three different goals of system use,
with multiple mechanisms to achieve them. For each performance
goal, there is a best mechanism that DoPE uses by default. In other
words, a human need not select a particular mechanism to use from
among many. Multiple mechanisms are described for each perfor-
mance goal in order to demonstrate the power of DoPE’s API. Ta-
ble 3 lists the implemented mechanisms and the number of lines of
code for implementing each. Two of the mechanisms are proposed
in prior work for a fixed goal-mechanism combination.

Mechanism
WQT-H [WQ-Linear [TBF [FDP[29] | SEDA [38] [TPC
28 | 9 I 94 | 30 | 154

Table 3. Lines of code to implement tested mechanisms

7.1 Goal: “Min Response time with N threads”

For systems serving online applications, the system utility is often
maximized by minimizing the average response time experienced
by the users, thereby maximizing user satisfaction. In the video
transcoding example of Section 2, the programmer used an obser-
vation to minimize response time: If load on the system is light,
a configuration that minimizes execution time is better, whereas if
load is heavy, a configuration that maximizes throughput is better.
This observation informs the following mechanisms:

Mechanism: Work Queue Threshold with Hysteresis (WQT-H)
WQT-H captures the notion of “latency mode” and “throughput
mode” in the form of a 2-state machine that transitions from one
state to the other based on occupancy of the work queue. Initially,
WQT-H is in the SEQ state in which it returns a DoP extent
of 1 (sequential execution) to each task. When the occupancy of
the work queue remains under a threshold 7" for more than N,z
consecutive tasks, WQT-H transitions to the PAR state in which
it returns a DoP extent of M4, (DoP extent above which parallel
efficiency drops below 0.5) to each task. WQT-H stays in the PAR
state until the work queue threshold increases above 71" and stays
like that for more than N,,, tasks. The hysteresis allows the system
to infer a load pattern and avoid toggling states frequently. The
hysteresis lengths (N, and N,g) can be weighted in favor of one
state over another. For example, one extreme could be to switch to
the PAR state only under the lightest of loads (Nog > Non).

Mechanism: Work Queue Linear (WQ-Linear) A more grace-
ful degradation of response time with increasing load may be
achieved by varying the DoP extent continuously in the range
[Mpmin, Myaz], rather than just toggling between two DoP extent
values. WQ-Linear assigns a DoP extent according to Equation 2.

DOPcztcnt = max(Mmin7 M’maz —k x WQO) (2)

WQo is the instantaneous work queue occupancy. k is the rate
of DoP extent reduction (k > 0). k is set according to Equation 3.

Mmaz - Mmin
k= ——— 3)
Qmaz

@ maz in Equation 3 is derived from the maximum response time
degradation acceptable to the end user and is set by the system ad-
ministrator taking into account the service level agreement (SLA),
if any. The degradation is with respect to the minimum response
time achievable by the system at a load factor of 1.0. The thresh-
old value 7" in the WQT-H mechanism is obtained similarly by a
back-calculation from the acceptable response time degradation. A
variant of WQ-Linear could be a mechanism that incorporates the
hysteresis component of WQT-H into WQ-Linear.

7.2 Goal: “Max Throughput with N threads”

Many applications can be classified as throughput-oriented batch
applications. The overall application throughput is limited by the
throughput of the slowest parallel task. By observing the in-queue
occupancies of each task and task execution time, throughput lim-
iting tasks can be identified and resources can be allocated accord-
ingly. This informs the following mechanisms:

Mechanism: Throughput Balance with Fusion (TBF) TBF
records a moving average of the throughput (inverse of execu-
tion time) of each task. When reconfiguration is triggered, TBF
assigns each task a DoP extent that is inversely proportional to the
average throughput of the task. If the imbalance in the through-
puts of different tasks is greater than a threshold (set to 0.5), TBF
fuses the parallel tasks to create a bigger parallel task. The ratio-
nale for fusion is that if a parallel loop execution is heavily unbal-
anced, then it might be better to avoid the inefficiency of pipeline
parallelism. Our current implementation requires the application
developer to implement and register the desired fused task via
the TaskDescriptor API that allows expression of choice of
ParDescriptors (see lines 4 and 6 in Figure 3). Creating fused
tasks is easy and systematic: Unidirectional inter-task communi-
cation should be changed to method argument communication via
the stack. Some of the applications that we studied already had pre-
existing code for fusing tasks in the original Pthreads-parallelized
source code. These were originally included to improve sequential
execution in case of cache locality issues. Once registered, DoPE
will automatically spawn the fused task if task fusion is triggered
by the mechanism. Other mechanisms for throughput maximization
that we tested are:

Mechanism: Feedback Directed Pipelining (FDP) FDP uses
task execution times to inform a hill climbing algorithm to identify
parallelism configurations with better throughput [29].

Mechanism: Stage Event-Driven Architecture (SEDA) SEDA
assigns a DoP extent proportional to load on a task [38].

7.3 Goal: “Max Throughput with N threads, P Watts”

Mechanism: Throughput Power Controller (TPC) The admin-
istrator might want to maximize application performance under a
system level constraint such as power consumption. DoPE enables
the administrator to specify a power target, and uses a closed-loop
controller to maximize throughput while maintaining power con-
sumption at the specified target. The controller initializes each task
with a DoP extent equal to 1. It then identifies the task with the least
throughput and increments the DoP extent of the task if through-
put improves and the power budget is not exceeded. If the power
budget is exceeded, the controller tries alternative parallelism con-
figurations with the same DoP extent as the configuration prior
to power overshoot. The controller tries both new configurations

Application | Description . Lines of Code Number Qf Inner Do}?min
PP P Added | Modified | Deleted | Fused Total | Loop Nesting extent for
Levels speedup

x264 Transcoding of yuv4mpeg videos [3] 72 10 8 - | 39617 2 2
swaptions Option pricing via Monte Carlo simulations [3] 85 11 8 - 1428 2 2
bzip Data compression of SPEC ref input [6, 28] 63 10 8 - 4652 2 4
gimp Image editing using oilify plugin [10] 35 12 4 - 1989 2 2
ferret Image search engine [3, 17] 97 15 22 59 | 14781 1 -
dedup Deduplication of PARSEC nat ive input [3] 124 10 16 113 7546 1 -

Table 4. Applications enhanced using DoPE. Columns 3-7 indicate the effort required to port the original Pthreads based parallel code to
the DoPE interface. Where applicable, column 6 indicates the number of lines of code in tasks created by fusing other tasks. Column 8
indicates the number of loop nesting levels in each application that were exposed for this study. Where applicable, the last column indicates
the minimum DoP extent of the inner loop at which the execution time of a transaction is improved.

and configurations from recorded history in order to determine the
configuration with best throughput. The controller monitors power
and throughput continuously in order to trigger reconfiguration if
needed.

8. Evaluation

Table 4 provides a brief description of the applications that have
been enhanced using DoPE. All are computationally intensive par-
allel applications.

8.1 The DoPE Interface

Columns 3-7 in Table 4 are indicative of the effort required to
port existing Pthreads based parallel applications to the proposed
DoPE API. The nature of the changes has already been illustrated
in Section 3. The number of additional lines of code written by the
application developer could be significantly reduced with compiler
support for functor creation and variable capture in C++ and task
fusion.

8.2 The DoPE Run-time System

The DoPE run-time system is implemented as a user-land shared
library built on top of Pthreads. The performance overhead (com-
pared to the Pthreads parallelizations) of run-time monitoring of
workload and platform characteristics is less than 1%, even for
monitoring each and every instance of all the parallel tasks. While
we have explored more combinations, for all but one benchmark
in Table 4, we present results on one performance goal. For one
benchmark—an image search engine (ferret)—we present re-
sults on all the tested performance goals.

All improvements reported are over the baseline Pthreads based
parallelizations. All evaluations were done natively on an Intel
Xeon X7460 machine composed of 4 sockets, each with a 6-core
Intel Core Architecture 64-bit processor running at 2.66GHz. The
total number of cores (and hardware contexts) is 24. The system is
equipped with 24GB of RAM and runs the 2.6.31-20-server Linux
kernel. Applications were compiled using gcc 4.4.1 with the —03
optimization flag. Reported numbers are average values over three
runs. In the case of applications with online server behavior, the
arrival of tasks was simulated using a task queuing thread that
enqueues tasks to a work queue according to a Poisson distribution.
The average arrival rate determines the load factor on the system.
A load factor of 1.0 corresponds to an average arrival rate equal to
the maximum throughput sustainable by the system. The maximum
throughput is determined as N/T" where N is the number of tasks
and 7T is the time taken by the system to execute the tasks in
parallel (but executing each task itself sequentially). To determine
the maximum throughput for each application, N was set to 500.

8.2.1 Goal: “Min Response time with N threads”

The applications studied for this goal are video transcoding, op-
tion pricing, data compression, image editing, and image search.
All applications studied for this goal have online service behavior.
Minimizing response time is most interesting in the case of appli-
cations with nested loops due to the potential latency-throughput
tradeoff described in Section 2. The outermost loop in all cases it-
erates over user transactions. The amount of parallelism available
in this loop nesting level varies with the load on the servers.

Figure 11 shows the performance of the WQT-H and WQ-
Linear mechanisms compared to the static <DoPouyter, Do Pinner >
configurations of DoP = < (24, DOALL), (1, SEQ)> and DoP
= <(N/Mypqez, DOALL), (Mypaz, PIPE | DOALL)>. Here,
M a0 refers to the extent of DoPjy,ner above which parallel ef-
ficiency drops below 0.5.

Interestingly, WQT-H outperforms both static mechanisms at
certain load factors. For example, consider the response times at
load factor 0.8 in Figure 11(b). Analysis of the work queue oc-
cupancy and DoP assignment to tasks reveals that even though
the load factor is on average equal to 0.8, there are periods
of heavier and lighter load. DoPE’s dynamic adaptation of the
DoP between DoP = <(24, DOALL),(1,SEQ)> and DoP =
<(N/Mmaz, DOALL), (Mmaz, PIPE | DOALL)> results in
an average DoP somewhere in between the two, and this aver-
age DoP is better than either for minimizing response time. This
provides experimental validation of the intuitive rationale behind
WQ-Linear, which provides the best response time characteristic
across the load factor range. In the case of data compression (Fig-
ure 11(c)), the minimum extent of Do Py, at which speedup is
obtained over sequential execution is 4 (see Table 4). This results in
two problems for WQ-Linear. First, WQ-Linear may give unhelp-
ful configurations such as <(8, DOALL), (3, PIPE)>. Second,
the number of configurations at WQ-Linear’s disposal is too few to
provide any improvement over WQT-H.

Figure 12 shows the response time characteristic of ferret.
The figure shows the static distribution of threads to each pipeline
stage. For example, (<1,6,6,6,6,1>, PIPFE) indicates a single
loop parallelized in a pipelined fashion with 6 threads allocated
to each parallel stage and 1 thread allocated to each sequential
stage. Oversubscribing the hardware resources by allocating 24
threads to each parallel task results in much improved response
time compared to a static even distribution of the 24 hardware
threads. DoPE achieves a much better characteristic by allocating
threads proportional to load on each task.

8.2.2 Goal: “Max Throughput with N threads”

For batch processing applications, a desirable performance goal is
throughput maximization. DoPE uses the mechanisms described in
Section 7.2 to improve the throughput of an image search engine
and a file deduplication application.

50 \ \ 12 \ \
P a5 <(24.DOALL),(1,SEQ)> & o~ <(24,DOALL),(1,SEQ)> ~&--
3 <(3,DOALL),(8,PIPE)> -—-®-- © 1o 1. <(3DOALL),(8,DOALL)> -—e--
Q40 WQT-H —&— % Q WQT-H —&—
; 35 WQ-Linear —%— ; g WQ-Linear —%—
£ 30 =
.g £ - £ e g 6
Q20 Q !]
g1 g
10 2,
S L — :
0 0
02 0.4 06 0.8 1 12 02 0.4 06 0.8 1 12
Normalized load on system Normalized load on system
(a) Video transcoding (b) Option pricing
30 : : 50 : :
o <(24,DOALL),(1,SEQ)> @3-~ A > <(24,DOALL),(1,SEQ)> -3 o
Q 55 | <(4,DOALL),(6,PIPE)> ---e-- . Q <(3,DOALL),(8, DOALL)> &/
Q WQT-H ——)4 8 40 4 WQT-H —a—
~ WQ-Linear —%— / ~ WQ-Linear —%— /)
8 2., e
o= . i g
= s = “
10 A S S . g2
Slog / £
& /é" 10
[S A e] p———
~ ~
0 0 ‘
02 04 0.6 0.8 1 12 02 0.4 06 0.8 1 12
Normalized load on system Normalized load on system
(c) Data compression (d) Image editing
Figure 11. Response time variation with load using Static, WQT-H, and WQ-Linear mechanisms
08 (<1,6:6:6.6,1>,PIPE) —& 70 ‘ ‘ ‘ ‘ ‘
& 0.7 {-(<1,24,24,24,24,1>PIPE) -5 Dol
Q WQT-H —&— 3
— 0.6 1 WQ-Linear —+ 25l
g 0s " C%
= 04 — Zaor
) e 230k
% 03 . .)
= =
2 02 /A/ 220
% : 1) DoPE Stable
&) 0.1 E 10 |/ Throughput
Opti
0 L L L L L L L
02 04 0.6 038 1 12 6 200 400 600 800 1000 1200 1400
Normalized load on system Time (seconds)
Figure 12. ferret Response Time Figure 13. ferret Throughput
800 T T T . 70 —
ekt e _Hﬁ»}‘rzirgit*Power: 90% of Peak @
00 e T o Dywaiic Ringe] 60 2
2600t . g
= 1 50 qs)
<
500 j
R/ ° Throughput: 62% of Peak| 40 g
=400 3 ° =
= 11303 Apps. ferret | dedup
o & -
= 300 - : : .;0:0 Pthreads Baseline 1.00x | 1.00x
o f f 720 0S 2.12x | 0.89x
A 200 Power Throughput Stable 8 SEDA 138 1ed 116
100 4 Ramp ; Opti : Throp WeL v 10 = [38] 64X 10X
0 i L Throughput with power ovélr% ggt e 0 = DoPE FDP [29] 2.14x 2.08x
0 500 1000 1500 2000 B 1.96x | 1.75%
Time (seconds) TBF 235X | 2.36%
Figure 14. ferret Power-Throughput Figure 15. Throughput improvement over static even thread

distribution

Table 15 shows the throughput improvements for ferret and
dedup using different mechanisms. Pthreads-Baseline is the orig-
inal Pthreads parallelization with a static even distribution of avail-
able hardware threads across all the parallel tasks after assigning
a single thread to each sequential task. (This is a common prac-
tice [21].) The Pthreads-OS number shows the performance when
each parallel task is initialized with a thread pool containing as
many threads as the number of available hardware threads in the
platform, and the operating-system’s scheduler is called upon to do
load balancing. The remaining numbers represent the performance
of the DoPEd applications using the mechanisms described in Sec-
tion 7.2. DoPE-TB is the same as DoPE-TBF but with task fusion
turned off, in order to demonstrate the benefit of task fusion.

DoPE-TBF outperforms all other mechanisms. OS scheduling
causes more context-switching, cache pollution, and memory con-
sumption. In the case of dedup, these overheads result in virtu-
ally no improvement over the baseline. The overheads may become
prominent even in the case of ferret on a machine with a larger
number of cores. In addition, this mechanism is still a static scheme
that cannot adapt to run-time events such as more cores becoming
available to the application. Each task in SEDA resizes its thread
pool locally without coordinating resource allocation with other
tasks. By contrast, both FDP and TBF have a global view of re-
source allocation and are able to redistribute the hardware threads
according to the throughput of each task. Additionally, FDP and
TBF are able to either fuse or combine tasks in the event of very
uneven load across stages. Compared to FDP which simulates task
fusion via time-multiplexed execution of tasks on the same thread,
TBF has the additional benefit of avoiding the overheads of for-
warding data between tasks by enabling the developer to explicitly
expose the appropriate fused task.

Figure 13 shows the dynamic throughput characteristic of
ferret. DoPE searches the parallelism configuration space be-
fore stabilizing on the one with the maximum throughput under the
constraint of 24 hardware threads.

8.2.3 Goal: “Max Throughput with N threads, P Watts”

Figure 14 shows the operation of DoPE’s power-throughput con-
troller (TPC) on ferret. For a peak power target specified by the
administrator, DoPE first ramps up the DoP extent until the power
budget is fully used. DoPE then explores different parallelism con-
figurations and stabilizes on the one with the best throughput with-
out exceeding the power budget. Note that 90% of peak total power
corresponds to 60% of peak power in the dynamic CPU range
(all cores idle to all cores active). DoPE achieves the maximum
throughput possible at this setting. Fine-grained per core power
control can result in a wider dynamic range and greater power sav-
ings [27]. Full system power was measured at the maximum sam-
pling rate (13 samples per minute) supported by the power distribu-
tion unit (AP7892 [2]). This limited the speed with which the con-
troller responds to fluctuations in power consumption. Newer chips
have power monitoring units with higher sampling rates and clock
gating per core. They could be used to design faster and higher
performance controllers for throttling power and parallelism. The
transient in the Stable region of the figure shows how constant mon-
itoring enables DoPE to respond to system events.

9. Related Work

Parallelization Libraries Several interfaces and associated run-
time systems have been proposed to adapt parallel program exe-
cution to run-time variability [4, 8, 9, 13, 20, 26, 29, 35, 37, 38].
However, each interface is tied to a specific performance goal, spe-
cific mechanism of adaptation, or a specific application/platform
domain. OpenMP [22], Cilk [5], and Intel TBB [26] support task
parallelism for independent tasks and their schedulers optimize

only for throughput. DoPE enables the developer to express par-
allelism in loop nests involving interacting tasks, and enables ad-
ministrators to specify different performance goals. Navarro et al.
developed an analytical model for pipeline parallelism to charac-
terize performance and efficiency of pipeline parallel implemen-
tations [21]. Suleman et al. proposed Feedback Directed Pipelin-
ing (FDP) [29]. Moreno et al. proposed a technique similar to FDP
called Dynamic Pipeline Mapping (DPM) [20]. We implemented
FDP as a throughput maximization mechanism.

Domain-specific Programming Models Traditionally, multiple
levels of parallelism across tasks and within each task has been in-
vestigated in the database research community for SQL queries [7,
12,31, 32]. DoPE extends these works by providing dynamic adap-
tation to general-purpose applications that typically involve other
forms of parallelism like pipeline parallelism, task parallelism,
etc. DoPE also allows the administrator to specify different per-
formance goals, and optimizes accordingly. For network service
codes, programming models such as the Stage Event-Driven Ar-
chitecture (SEDA) [38] and Aspen [35] have been proposed. We
implemented the SEDA controller as a throughput maximization
mechanism. Compared to these models, DoPE is applicable to pro-
grams with loop nests, and supports multiple performance goals.
The mechanisms proposed for different performance goals in the
context of DoPE could form a valuable part of the respective run-
time schedulers of SEDA and Aspen. Blagojevic et al. propose
user-level schedulers that dynamically “rightsize” the loop nest-
ing level and degree of parallelism on a Cell Broadband Engine
system [4]. Unlike DoPE, they exploit only one form of intra-task
parallelism—loop-level DOALL parallelism.

Auto-tuning Wang et al. use machine learning to predict the best
number of threads for a given program on a particular hardware
platform [37]. They apply their technique on programs with a
single loop. Luk et al. use a dynamic compilation approach and
curve fitting to find the optimal distribution of work between a
CPU and GPU [16]. Hall and Martonosi propose to increase or
decrease threads allocated to compiler parallelized DOALL loops
at run-time as the measured speedup exceeds or falls short of the
expected speedup [11]. The ADAPT dynamic optimizer applies
loop optimizations at run-time to create new variants of code [36].
Some of these sophisticated machine learning techniques could be
used to improve DoPE’s mechanisms.

10. Conclusion

Parallel applications must execute robustly across a variety of exe-
cution environments arising out of variability in workload charac-
teristics, platform characteristics, and performance goals. For this,
a separation of concerns of parallel application development, its
optimization, and use, is required. The Degree of Parallelism Ex-
ecutive (DoPE) enables such a separation. Using DoPE, the appli-
cation developer can specify all of the potential parallelism in loop
nests just once; the mechanism developer can implement mecha-
nisms for parallelism adaptation; and the administrator can select a
suitable mechanism that implements a performance goal of system
use. As a result of DoPE, they can be confident that the specified
performance goals are met in a variety of application execution en-
vironments.

Acknowledgments

We thank the entire Liberty Research Group for their support
and feedback during this work. We thank Alexander Wauck for
help with the data compression application. We also thank the
anonymous reviewers for their valuable feedback. This material is
based on work supported by National Science Foundation Grants

0964328 and 1047879, and by United States Air Force Contract
FA8650-09-C-7918. Arun Raman is supported by an Intel Founda-
tion Ph.D. Fellowship.

References

[1] R. Allen and K. Kennedy. Optimizing compilers for modern architec-
tures: A dependence-based approach. Morgan Kaufmann Publishers
Inc., 2002.

[2] APC metered rack PDU user’s guide. http://www.apc.com.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark

suite: characterization and architectural implications. In Proceedings

of the Seventeenth International Conference on Parallel Architecture

and Compilation Techniques (PACT), 2008.

F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, C. D. Antonopou-

los, and M. Curtis-Maury. Runtime scheduling of dynamic parallelism

on accelerator-based multi-core systems. Parallel Computing, 2007.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.

Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime

system. In Proceedings of the 5th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP), 1995.

M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August.

Revisiting the sequential programming model for multi-core. In

Proceedings of the 40th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), 2007.

C. B. Colohan, A. Ailamaki, J. G. Steffan, and T. C. Mowry. Opti-

mistic intra-transaction parallelism on chip multiprocessors. In Pro-

ceedings of the 31st International Conference on Very Large Data

Bases (VLDB), 2005.

M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S.

Nikolopoulos. ~ Online power-performance adaptation of multi-

threaded programs using hardware event-based prediction. In Pro-

ceedings of the 20th International Conference on Supercomputing

(ICS), 2006.

[9] Y. Ding, M. Kandemir, P. Raghavan, and M. J. Irwin. Adapting

4

finar

[5

—_

[6

—

[7

—

[8

—

application execution in CMPs using helper threads. Journal of

Parallel and Distributed Computing, 2009.

[10] GNU Image Manipulation Program. http://www.gimp.org.

[11] M. W. Hall and M. Martonosi. Adaptive parallelism in compiler-
parallelized code. In Proceedings of the 2nd SUIF Compiler Work-
shop, 1997.

[12] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki, and
B. Falsafi. Database servers on chip multiprocessors: Limitations and
opportunities. In Proceedings of the Third Biennial Conference on
Innovative Data Systems Research (CIDR), 2007.

[13] W. Ko, M. N. Yankelevsky, D. S. Nikolopoulos, and C. D. Poly-
chronopoulos. Effective cross-platform, multilevel parallelism via dy-
namic adaptive execution. In Proceedings of the International Paral-
lel and Distributed Processing Symposium (IPDPS), 2002.

[14] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala,
and L. P. Chew. Optimistic parallelism requires abstractions. In
Proceedings of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation (PLDI), 2007.

[15] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovi, and J. Kubiatow-
icz. Tessellation: Space-time partitioning in a manycore client OS. In
Proceedings of the First USENIX Workshop on Hot Topics in Paral-
lelism (HotPar), 2009.

[16] C.-K.Luk, S. Hong, and H. Kim. Qilin: Exploiting parallelism on het-
erogeneous multiprocessors with adaptive mapping. In Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2009.

[17] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Ferret: A
toolkit for content-based similarity search of feature-rich data. ACM
SIGOPS Operating Systems Review, 2006.

[18] J. Mars, N. Vachharajani, M. L. Soffa, and R. Hundt. Contention
aware execution: Online contention detection and response. In Pro-
ceedings of the Eighth Annual International Symposium on Code
Generation and Optimization (CGO), 2010.

[19] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Eliminating
server idle power. In Proceedings of the Fourteenth International
Symposium on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2009.

[20] A. Moreno, E. César, A. Guevara, J. Sorribes, T. Margalef, and
E. Luque. Dynamic Pipeline Mapping (DPM). In Proceedings of
the International Euro-Par Conference on Parallel Processing (Euro-
Par), 2008.

[21] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval. Analytical mod-
eling of pipeline parallelism. In Proceedings of the Eighteenth Inter-
national Conference on Parallel Architecture and Compilation Tech-
niques (PACT), 2009.

[22] The OpenMP API specification for parallel programming.
http://www.openmp.org.

[23] H. Pan, B. Hindman, and K. Asanovi¢. Composing parallel software
efficiently with Lithe. In Proceedings of the ACM SIGPLAN 2010
Conference on Programming Language Design and Implementation
(PLDI), 2010.

[24] M. K. Prabhu and K. Olukotun. Exposing speculative thread paral-
lelism in SPEC2000. In Proceedings of the 10th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP),
2005.

[25] A.Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Spec-
ulative parallelization using software multi-threaded transactions. In
Proceedings of the Fifteenth International Symposium on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS), 2010.

[26] J. Reinders. Intel Threading Building Blocks. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2007.

[27] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, and M. L. Scott. Energy-efficient processor design
using multiple clock domains with dynamic voltage and frequency
scaling. In Proceedings of the Eighth International Symposium on
High-Performance Computer Architecture (HPCA), 2002.

[28] Standard Performance Evaluation Corporation (SPEC).
http://www.spec.org.

[29] M. A. Suleman, M. K. Qureshi, Khubaib, and Y. N. Patt. Feedback-
directed pipeline parallelism. In Proceedings of the Nineteenth Inter-
national Conference on Parallel Architecture and Compilation Tech-
niques (PACT), 2010.

[30] M. A. Suleman, M. K. Qureshi, and Y. N. Patt. Feedback-driven
threading: Power-efficient and high-performance execution of multi-
threaded workloads on CMPs. In Proceedings of the Thirteenth
International Symposium on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2008.

[31] Sybase adaptive server. http://sybooks.sybase.com/nav/base.do.

[32] J. Tellez and B. Dageville. Method for computing the degree of
parallelism in a multi-user environment. United States Patent No.
6,820,262. Oracle International Corporation, 2004.

[33] The IEEE and The Open Group. The Open Group Base Specifications
Issue 6 IEEE Std 1003.1, 2004 Edition. 2004.

[34] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or discard
execution model for speculative parallelization on multicores. In
Proceedings of the 41st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2008.

[35] G. Upadhyaya, V. S. Pai, and S. P. Midkiff. Expressing and exploiting
concurrency in networked applications with Aspen. In Proceedings
of the 12th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2007.

[36] M. J. Voss and R. Eigenmann. ADAPT: Automated De-Coupled
Adaptive Program Transformation. In Proceedings of the 28th In-
ternational Conference on Parallel Processing (ICPP), 1999.

[37] Z. Wang and M. F. O’Boyle. Mapping parallelism to multi-cores:
A machine learning based approach. In Proceedings of the 14th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2009.

[38] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for
well-conditioned, scalable internet services. ACM SIGOPS Operating
Systems Review, 2001.

[39] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview
of the H.264/AVC video coding standard. IEEE Transactions on
Circuits and Systems for Video Technology, 2003.

[40] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering
hidden loop level parallelism in sequential applications. In Proceed-
ings of the 14th International Symposium on High-Performance Com-
puter Architecture (HPCA), 2008.

