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ABSTRACT

Decoupling Scheduling and Storage Formats for Balanced
Graph Processing on a GPU

Only with a proper schedule and a proper storage format, a graph algo-

rithm can be efficiently processed on GPUs. Existing GPU graph processing

frameworks try to find an optimal schedule and storage format for an algo-

rithm via iterative search, but they fail to find the optimal configuration be-

cause their schedules and storage formats are tightly coupled in their pro-

cessing models. Moreover, their tightly coupled schedules and storage formats

make it difficult for developers to extend the tuning space. However, imple-

menting all possible combinations of the schedule and storage format would

impose a substantial implementation burden. Therefore, clear decoupling is

essential to efficiently explore optimization combinations efficiently.

This dissertation aims to enlarge the tuning space by decoupling the three

key components in graph processing on a GPU, such as algorithm, schedule,

and storage format. This dissertation begins by analyzing the characteris-

tics of the existing optimizations, presenting a fundamental abstraction in-

terface for each key component, and suggesting a new processing model. Fur-

thermore, this research proposes GRAssembler, a new GPU graph processing

framework that efficiently integrates the decoupled schedule, storage format,

and algorithm without abstraction overhead. Finally, the research enhances

the coverage, composability, extendability, and modularity of GPU graph pro-
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cessing.

Furthermore, this research demonstrates that decoupled abstractions not

only integrate existing studies but also help to uncover new opportunities for

performance improvements focusing on workload imbalance in GPU graph

processing. First, this research shows that new optimization can be proposed

by considering the operation of the abstraction interface. By focusing on the

role of storage format and deciding memory access patterns, this research

proposes a new storage format called CR2, aligned to the characteristics of

both graphs and GPUs. Second, this research shows that new hardware ac-

celeration opportunities can be revealed by analyzing the abstract methods

of existing studies. Based on observations of runtime overhead in existing

schedules because of the lack of hardware support, this research proposes a

new lightweight GPU functional unit microarchitecture called SparseWeaver

that converts sparse operations into dense operations to accelerate schedule.

CR2 and SparseWeaver are designed based on the behavior of the abstraction

interface and enhance the tuning space.

Leveraging efficient decoupling and integration, GRAssembler significantly

expands the tuning space from 336 to 4,480, resulting in a 1.3 times speedup

over the state-of-the-art GPU graph processing framework. CR2 achieves a 1.53

times performance boost while reducing memory usage by 32.1% on average.

SparseWeaver delivers a 2.49 times reduction in execution time compared to

the existing approach, with a minimal area overhead of just 0.045%.

Keywords: Graph Processing, GPU, Storage Format, Schedule, Auto-tuning, Workload Bal-
ancing
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Chapter 1

INTRODUCTION

1.1 Graph Processing on a GPU

Graphs are one of the most important and fundamental data structures for

reflecting sparse relationships in the real world. Various applications, includ-

ing social network analysis, web search algorithms, and biological data pro-

cessing [1, 2, 3, 4, 5], leverage graphs to structure data and perform diverse

analytical operations. As real-world graphs grow in size, analyzing graphs de-

mands substantial computational resources and time. Given that graphs com-

prise numerous vertices and edges, and graph processing typically involves

applying the same operation across all vertices and edges, these tasks exhibit

a highly parallel nature, making them well-suited for execution on graph-

ics processing units (GPUs). Therefore, many studies have tried to perform

graphs on GPUs, for example, and a survey paper was conducted by exam-

ining hundreds of papers [1]. Thus, optimizing graph processing on GPUs is

critical to minimizing computational time.

To perform graph on GPU, GPU-based graph processing frameworks [6, 7,

8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] have to consider three core com-

ponents: algorithm, storage format, and schedule. The algorithm determines

how to process the graph, the storage format determines how to store the

graph topology in GPU memory, and the schedule determines how to execute
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the algorithm. Specifically, storage format influences the memory access pat-

terns, while schedule dictates which threads handle which part of algorithm

and in what order.

Therefore, selecting an appropriate storage format and schedule for a given

algorithm is crucial, as this selection significantly impacts the efficiency of

graph processing on GPUs. Since real-world graphs with their diverse attributes

such as size, irregularity, sparsity, skewness, and degree distribution, it is im-

practical for a single storage format or schedule to ensure optimal perfor-

mance across all graph types and algorithms. However, existing graph pro-

cessing frameworks primarily emphasize schedules, often neglecting the crit-

ical role of storage formats and thereby restricting the tuning space for graph

processing. Their narrow focus on specific topology layouts hinders compre-

hensive optimization opportunities.

Furthermore, the limited compatibility between schedules and storage for-

mats in existing frameworks [6, 7, 8, 9, 10, 11, 12] restricts tuning options and

degrades graph processing efficiency. Current frameworks evaluate only a

limited set of predefined schedules, and their storage formats are tightly cou-

pled with the schedules. Consequently, when a schedule is selected, the cor-

responding storage format is predetermined, even though a different storage

format might be more suitable for certain datasets. This rigid coupling be-

tween schedules and storage formats limits optimization flexibility and per-

formance potential.

To make things worse, the tightly coupled schedules and storage formats

severely limit the extendability of graph processing space. Ideally, develop-

ers should be able to explore all M × N combinations by independently im-
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plementing M schedules and N storage formats (requiring only M + N im-

plementations). However, the coupling necessitates M ×N implementations,

imposing a substantial development burden. For example, introducing a new

storage format requires implementing it separately for each of the M existing

schedules. This development overhead discourages exploration and limits the

expansion of GPU graph processing optimization spaces.

In addition, the tightly coupled schedule and storage format also limit the

modularity of each component, making it difficult to explore new optimiza-

tion opportunities for both schedule and storage format. The precise defini-

tion and role of each component make it easier to understand individual com-

ponents and would help to find missing optimization opportunities. The de-

coupled storage format and schedule can conduct performance improvement

research by focusing solely on specific operations without being constrained

by other components. Alternatively, other components can be easily reused,

allowing us to obtain new optimization opportunities.

In particular, increasing modularity can open up new opportunities to ad-

dress workload imbalance, which is one of the most critical problems of graph

processing on GPUs with a SIMT architecture. When traversing the neighbor-

ing edges of certain vertices in a graph, traversal is inherently based on a sin-

gle vertex as the reference point, leading to an intuitive approach of mapping

one edge to a single thread. However, one of the important graph types, such

as web graphs or heavy-tailed graphs, exhibits high irregularity and skew-

ness, where a small number of vertices are connected to a disproportionately

large number of edges. For highly skewed graphs, the intuitive mapping often

causes workload imbalance among inter- or intra-warp, causing idle threads

3



in warps. The key challenge lies in effectively distributing neighboring edges

across threads. This issue can be addressed either by proposing a new stor-

age format, which is a static and predefined approach, or through schedule, a

runtime-based approach. Therefore, decoupling the two not only clearly de-

fines their respective roles but also facilitates combinations with other opti-

mizations, thereby unlocking opportunities for improved performance.

Therefore, it is essential to decouple schedule and storage format, enabling

greater tuning coverage, composability, extendability, and modularity.

1.2 Contribution

This research has focused on decoupling storage format and schedule in graph

processing on GPU and enlarging the tuning space. This decoupling enhances

the coverage, composability, extendability, and modularity of Graph process-

ing on GPU. In addition, this research also explores new optimization and ac-

celeration opportunities based on deeply exploring storage format and sched-

ule.

First, the main contribution of this research is proposing a new graph pro-

cessing abstraction scheme that fully decouples schedules and storage for-

mats. This work begins by characterizing schedule and storage format based

on their data access order and the explicit representation of edge data. Lever-

aging this characterization, the proposed abstraction interfaces effectively

separate schedules, storage formats, and algorithms, facilitated by an abstract

processing model that integrates these interfaces seamlessly. In addition, this

research develops a prototype, GRAssembler, which implements the proposed
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graph processing abstraction interfaces with various optimizations and en-

hances the graph processing tuning space through the introduction of a new

processing model. Lastly, a case study on extending the storage format library

is presented, illustrating the high adaptability and extensibility enabled by

this abstraction.

Second, based on analysis of existing storage format, this research sug-

gests a new graph storage format called CR2 focusing on memory access pat-

terns considering GPU and real-world graph characteristics. CR2 provides ver-

tex ID compression with community-aware subgraphs and vertex degree reg-

ularization with degree-ordered subgraphs, enabling high-performance and

memory-efficient processing. CR2 reduces memory usage while exploiting the

skewed locality of a graph and degree-ordered subgraphs that allow fine-

grained workload balancing and the removal of offset arrays. Additionally,

the work presents an in-depth evaluation of CR2-based graph processing.

Third, this research proposes a new lightweight GPU functional unit mi-

croarchitecture called SparseWeaver based on an analysis of common func-

tionality in existing software schedule schemes. SparseWeaver converts sparse

operations in graph processing into dense operations using Weaver and bal-

ances the workloads across GPU threads. Weaver tightly integrated into the

GPU with minimal hardware modifications. This research provides an in-depth

evaluation of SparseWeaver, comparing it with both software and hardware

schemes, using real-world graph datasets and benchmarks, demonstrating its

effectiveness with minimal hardware modifications.
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1.3 Organization

This dissertation is organized as follows:

Chapter 2 introduces a novel graph processing abstraction scheme for GPU

that fully decouples schedules, storage formats, and algorithms using abstrac-

tion interfaces. Additionally, this chapter presents a prototype framework,

GRAssembler, based on a new processing model which efficiently integrates

the decoupled schedule, storage format, and algorithm components while min-

imizing abstraction-related overhead.

Chapter 3 proposes a new storage format optimization, referred to as CR2.

This scheme introduces vertex ID compression through community-aware

subgraphs and vertex degree regularization using degree-ordered subgraphs,

enabling high-performance and memory-efficient graph processing on GPUs.

Chapter 4 introduces SparseWeaver, a new schedule that utilizes a novel

microarchitecture extension. This microarchitecture accelerates the sched-

ule process by transforming sparse operations into dense ones through the

use of storage format abstractions, ensuring balanced workloads across GPU

threads.

Chapter 5 concludes the dissertation, summarizing the contributions and

discussing future research endeavors that relate to this work.
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Chapter 2

GRAPH PROCESSING MODEL AND ABSTRACTION FOR

GRAPH PROCESSING ON A GPU

To enlarge the tuning space of graph processing, this research introduces a

novel graph processing abstraction scheme that completely decouples

schedules and storage formats. Through the development of extensible and

non-interfering interfaces, we identify that schedules and storage formats can

be effectively decoupled. A detailed analysis of the three primary components

of graph processing reveals the following insights. First, schedules can be cat-

egorized into two types based on their graph data access. Second, storage for-

mats can be abstracted into two forms depending on whether they explicitly

define both source and destination vertices. Third, components of the same

type share a small set of commonly used operations, enabling the creation of

abstract interfaces capable of implementing all existing schedules and stor-

age formats. These interfaces fully decouple schedules and storage formats,

facilitating significant expansion of the tuning space.

This chapter introduces GRAssembler, a new GPU graph processing frame-

work designed to support fully decoupled abstraction interfaces, thereby en-

hancing the enlargement of tuning spaces. GRAssembler comprises a tuner,

a graph builder, and a runtime, which respectively enable the exploration of

tuning spaces, the construction of various storage formats, and the execution
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of graph programs using abstraction interfaces. To mitigate potential perfor-

mance overheads introduced by the abstraction, GRAssembler minimizes ar-

gument passing and employs function templates instead of function pointers.

By exploring the expanded tuning space, GRAssembler identifies the optimal

combinations of storage format and schedule, surpassing the capabilities of

existing frameworks with limited tuning spaces. Furthermore, GRAssembler

broadens the tuning space with a new GPU-friendly optimization. Leverag-

ing its abstract interfaces and optimizations, GRAssembler discovers the op-

timal graph processing model from an expanded tuning space that fully en-

compasses the entire tuning spaces of existing frameworks.

2.1 Component of Graph Processing on GPU

GPU graph processing frameworks [7, 8, 9, 10, 11, 12, 15, 16, 17] are designed

to process various graphs using diverse algorithms with some tuning options.

Therefore, these frameworks receive input graphs and simple algorithm func-

tions from the user and process them on GPUs. The input graph normally con-

sists of vertices and edges and sometimes includes weights for each edge. al-

gorithm refers to the processing method applied to the graph, so the frame-

work performs the algorithm function during pre-defined kernels. The tun-

ing options modify the pre-defined kernels. This work categorizes the tuning

options into schedule and storage format. Schedule describes the execution

order of graph components, for example, how to distribute vertices to threads

to process algorithm. Storage format describes how to store the graph topol-

ogy in memory.
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2.1.1 Graph Algorithm for GPU

An algorithm defines the approach for processing a graph G = (V,E). Typ-

ically, graph processing involves the iterative execution of four core opera-

tions: gather, sum, apply, and scatter. Gather retrieves data from the neighbor-

ing edges of an active vertex. Sum performs a reduction (e.g., fetch-and-add or

atomic min/max) on the data gathered during the gather step. Following this,

Apply updates the vertex value using the results from the gather and sum op-

erations. Specifically, apply acts as a self-update function to generate the final

value for the iteration. Scatter identifies updated vertices and incorporates

them into the new active vertex set [21]. Typically, single-GPU graph frame-

works can scatter through memory without requiring a separate scatter pro-

cess. The four core operations iterate until an end condition, such as conver-

gence or the absence of further updates, is met.

2.1.2 Graph Schedule for GPU

The schedule determines how GPU threads are assigned to specific parts of

a graph and the sequence in which they process the data. Two fundamental

scheduling schemes exist: the Vertex Mapping (VM) scheme assigns each ver-

tex to a separate thread, while the Edge Mapping (EM) scheme assigns each

edge to a thread.

The inherent skewed properties of real-world graphs often lead to signifi-

cant workload imbalance on SIMT architecture [21, 22]. For instance, because

vertices can have varying numbers of edges, VM suffers from workload imbal-

ance, as illustrated in Figure 2.1. On the other hand, EM does not have work-
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Figure 2.1: Existing schedules with the simple example graph. VM and EM are
basic schedules based on graph characteristics, while five other schedules en-
hance workload balancing through additional computation or memory usage.
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load imbalance, but it needs more memory access in gather stage, as depicted

in Figure 2.1.

To address these issues, a variety of schedules illustrated in Figure 2.1 em-

ploy different strategies to map workloads onto GPU resources, such as shared

or global memory [7, 8, 13, 14]. While these schedules introduce additional

communication and memory usage, they often achieve performance gains

with certain graphs.

Cooperative Thread Array Mapping (CM) and Warp Mapping (WM) dis-

tribute vertices across threads within a warp or a Cooperative Thread Ar-

ray (CTA) using shared memory. WM and CM load the degree of each vertex

and store basic information in shared memory. Subsequently, WM and CM

assign the neighboring edges of those vertices to individual threads. By shar-

ing workloads at the warp or CTA level, WM and CM balance workloads ef-

fectively while reducing synchronization overhead.

The Thread, Warp, and CTA method (TWC) [13] adopts a different strat-

egy by classifying vertices based on their degrees (i.e., the number of edges).

Vertices are divided into low, middle, and high-degree buffers stored in global

memory. TWC then launches three separate kernels, each optimized for thread,

warp, or CTA granularities, to process these queues. Although TWC achieves

a better workload balance than WM and CM due to its global workload distri-

bution, it incurs greater overhead than CM and WM from additional kernel

launches and frequent global memory accesses.

A variation of TWC, TWC based on Edge (TWCE)[8], constructs and pro-

cesses the queues entirely within shared memory in a single kernel, reduc-

ing the overhead associated with multiple kernel launches. Additionally, this
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Figure 2.2: Existing storage formats with the simple example graph. COO is a
basic form that includes both source and destination information in memory,
while other layouts aim to reduce memory usage or balance the workload by
modifying the stored information.

process attempts to replace shared memory loads with atomic updates. An-

other approach, STRICT[14], reorganizes active edges in global memory for

the current iteration and distributes them efficiently across CTAs for parallel

processing.

2.1.3 Storage Format for GPU

The storage format defines how a graph’s topology is organized in GPU mem-

ory. Because the edges connected to a single vertex represent only a small

portion of the total edges in a graph, graph topology is inherently sparse data.

Consequently, a key challenge in storage format design is to compress this

sparse topology while minimizing irregular memory accesses [12, 16, 17, 19,

12



23, 24, 25, 26]. Numerous storage formats have been developed to tackle this

issue, as shown in Figure 2.2.

The Coordinate Storage (COO) format uses two arrays to represent edges,

storing source vertex IDs (src) and destination vertex IDs (dest), along with an

offset array (ptr) that indicates the starting indices for each vertex in the src

and dest arrays. For example, in Figure 2.2, ptr[1] = 1 and ptr[2] = 6 signify

that the edges connected to vertex v1 are located from (src[1], dst[1]) to (src[5],

dst[5]).

Compressed Sparse Row (CSR) and Compressed Sparse Column (CSC) for-

mats eliminate one of the edge arrays (e.g., dest in Figure 2.2) found in the

COO format by leveraging the offset array (ptr) to deduce the missing infor-

mation. For instance, in Figure 2.2, with ptr[2] = 6, the source and destination

IDs of the edge at list[6] are 5 (the value at list[6]) and 2 (the index of ptr), re-

spectively. By omitting one edge array, CSR and CSC formats reduce memory

usage compared to COO; however, reconstructing the omitted data from an

edge ID involves an expensive binary search.

The Diagonal (DIA) format [24] stores subdiagonal edges in structured ar-

rays such as plus and minus, while non-subdiagonal edges are maintained in a

separate format like COO. For example, in Figure 2.2, for vertex V 4, plus[4] = 1

represents an upper subdiagonal edge pointing to 5, and minus[2] = 1 corre-

sponds to a lower subdiagonal edge pointing to 1.

The Ellpack (ELL) format [24] reserves a fixed number (ELL_SIZE) of

edges per vertex in a structured array (data), with any extra edges stored in a

secondary format such as COO. For instance, in Figure 2.2, the edges adjacent

to vertex V 4 are stored from data[ELL_SIZE × 4] to data[ELL_SIZE × 5− 1],
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assuming a fixed number of edges per vertex. The exact edge count can be

derived from nnz[4] = 2.

2.2 Related Work and Motivation of Decoupling

Existing graph processing frameworks [7, 8, 9, 10, 11, 12, 15, 16, 17] attempt to

determine the best tuning options for a given algorithm by exploring their

available configurations, including schedule and storage format. However,

these frameworks would fail to find the optimal tuning options because of

their constrained coverage of tuning options, limited composability, and lack

of extendability.

Table 2.1 shows the detail of existing configurable graph processing frame-

works, such as Gunrock [6], Gswitch [7], and GraphIt [8]. Gunrock [6] extends

this by introducing active set deduplication tuning and additional schedul-

ing plans, such as VM, EM, and TWC, to enhance load balancing. Gswitch [7]

supports more schedules than Gunrock and defines five configurations such

as direction, active-set data structure, load balancing (scheduling plans like

GRAssembler), stepping, and kernel fusion—while emphasizing the general-

ity and significance of graph programs. Similarly, GraphIt [8] supports the

same schedules and introduces a vertex blocking tuning knob and the TWCE

scheduling plan to refine optimization options further. These frameworks also

support auto-tuning for their respective configuration options, enabling more

efficient graph processing.

Despite these advances, existing frameworks predominantly focus on schedul-

ing plans (schedules) while overlooking the critical role of topology layouts
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Table 2.1: Comparsion of existing GPU-based graph processing framework re-
veals their varying levels of coverage across schedules, storage formats, and
interfaces

Framework Schedule Storage Format Interface
Algorithm Schedule Storage For-

mat
Gunrock [6] VM, EM, TWC COO, CSR O X X
Gswitch [7] VM, EM, WM,

CM, TWC, TWCE,
STRICT

COO, CSR O X X

Graphit [8] VM, EM, WM,
CM, TWC, TWCE,
STRICT

CSR O X X

GRAssembler VM, EM, WM,
CM, TWC, TWCE,
STRICT

COO, CSR, ELL,
DIA, Gshard

O O O

(storage formats). For instance, while frameworks like Gswitch and Gunrock

support two common layouts, COO and CSR, GraphIt [8] supports up to seven

schedule optimizations but only a single layout, CSR. This limited coverage

of storage formats significantly restricts their tuning spaces and prevents the

frameworks from fully optimizing graph processing efficiency. In contrast,

GRAssembler extends the tuning space by incorporating storage formats into

its configuration options, thus addressing this limitation and enabling more

comprehensive optimization for graph algorithms on GPUs.

Problem 1: Limited exploration coverage. Previous graph processing

frameworks fail to include a diverse range of schedules and storage formats

in their tuning space. As illustrated in Table 2.1, each framework considers

only a subset of schedules and storage formats within its exploration scope.

While these frameworks extend their support for various schedules, they of-

ten overlook certain storage format options, such as CSR and COO, or fail to

explore more advanced storage formats proposed in recent studies [17, 19].
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Figure 2.3: Comparison of processing times for various schedules and stor-
age formats using the PageRank algorithm on the hollywood and road-central
datasets [27].

Since storage format plays a crucial role in determining graph processing per-

formance, as shown in Figure 2.3b, this limited exploration — particularly re-

garding storage format — prevents frameworks from capitalizing on further

optimization opportunities.

Problem 2: Limited composability. As shown in Figure 2.3, the process-

ing time varies significantly based on the combinations of schedules and stor-

age formats across two datasets [27]. The optimal schedule depends on both

the storage format and the dataset, while the best storage format similarly

varies based on the schedule and dataset.

However, existing frameworks decouple only the algorithm from the pro-

cessing model, while schedule and storage format remain tightly coupled with-

in the model, as illustrated in Figure 2.4a. This tight coupling between sched-

ule and storage format allows exploration only of pre-implemented combina-

tions, potentially missing the optimal combination if it is not supported.

Problem 3: Limited exploration extendability. The tight coupling of sched-

ule and storage format in existing frameworks also hampers their extendabil-
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ity. When schedule and storage format are interdependent, a framework with

M schedules and N storage formats requires the development of M ×N com-

binations to support all possible configurations. For example, to fully imple-

ment both VM and EM schedules with COO, CSR, and ELL storage formats, the

framework must provide six combinations (2 × 3), as shown in Figure 2.4a.

Furthermore, adding a new schedule or storage format requires the devel-

oper to implement N or M additional combinations, respectively, to main-

tain full compatibility. Consequently, introducing new options in these frame-

works involves significant development effort and cost.

Solution: A new graph processing abstraction model. To address these

challenges, a new abstraction model and a new GPU graph processing model

are needed, one that decouples not just the algorithm but also the schedule

and storage format, as shown in Figure 2.6. This work proposes a new ab-

straction model designed with the objectives of high coverage, composabil-

ity, extendability, and efficiency and processing model using that abstraction

model.

First, the abstraction model should be versatile enough to encompass a

broad range of schedules and storage formats (high coverage). Second, the

scheduling of graph vertices and edges using a schedule, accessing storage

format through a storage format, and processing algorithm functions should

be fully independent, allowing for seamless combination within the abstrac-

tion model. This independence ensures that all possible combinations can be

realized (high composability) and that new options can be added without

requiring changes to existing implementations (high extendability). For in-

stance, if there are M schedules and N storage formats, developers only need

17



(a) Development model of the existing frameworks

(b) Example codes for different schedules and storage formats

Figure 2.4: The development model and example codes used in existing frame-
works [6, 7, 8] illustrate their limitations. As shown in (a), the development
model of these frameworks decouples only the algorithms from the pro-
cessing model. In (b), their example codes demonstrate how schedules (e.g.,
VM, EM) and storage formats (e.g., COO, CSR, ELL) are implemented. Due to
the tight coupling between schedule and storage format within these frame-
works, developers are required to implement M×N combinations to support
M schedules and N storage formats.
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Figure 2.5: Graph processing model suggested in GRAssembler. The process-
ing model includes edge schedule, storage format access, and vertex sched-
ule, separately.

to implement M +N options to enable all M ×N combinations. As illustrated

in Figure 2.6, developers would need to create only 5 (2 + 3) options to fully

support VM and EM schedules along with COO, CSR, and ELL storage formats.

Lastly, the decoupled schedule, storage format, and algorithms should be

integrated efficiently, minimizing abstraction overhead (high efficiency). This

design allows users to achieve optimal performance by selecting the best com-

bination of schedule and storage format.

2.3 Graph Processing Abstraction

We introduce a new graph processing model. As shown in Figure 2.5, our pro-

cessing model consists of a super-step that executes algorithm iteratively. The

super-step consists primarily of two stages: the gather step and the apply step.

During the gather step, the framework collects data from the incoming neigh-
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bors of each vertex. In the apply step, it updates vertex data by incorporating

the gathered data and the apply method of algorithm. After completing each

super-step, the framework identifies a set of vertices called the frontier, which

will be processed in the subsequent super-step.

The gather step is further divided into four sub-steps: edge schedule, stor-

age format access, gather, and sum. In the edge schedule step, the framework

determines the edge traverse direction, such as the incoming edge order or

outgoing edge order of the frontier vertices. schedule method investigates

neighbor information by decided direction and assigns the scheduled edges

to threads. During the storage format access sub-step, it retrieves edge details

such as source and destination vertex IDs and their weights from the storage

format. The gather and sum sub-steps involve collecting and aggregating the

incoming data for each vertex based on the requirements of algorithm. Since

some large graphs have more edges, the total number of software-supported

threads (e.g., maximum block size x maximum thread size) and the process-

ing model iterate gather step till traversing all active edges are traversed.

After finishing the gather step, the apply step that consists of vertex sched-

ule and apply is executed. To schedule vertex, the framework assigns vertices

from the frontier to threads. The apply step then updates the data for each

vertex by reflecting the accumulated incoming data. Same as the gather step,

the apply step iterates till traversing all vertex in the graph.

Unlike existing graph processing models [7, 8, 10, 11, 12, 15, 16, 17], the

newly proposed abstract graph processing model treats edge scheduling, ver-

tex scheduling, and storage format access as distinct sub-steps. This separa-

tion allows a graph processing framework to independently perform edge
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and vertex scheduling, access the storage format, and execute the algorithm.

Consequently, with well-designed abstraction interfaces for schedule, storage

format, and algorithm, this model enables a complete decoupling of schedule,

storage format, and algorithm from one another.

2.3.1 Schedule Abstraction

The schedule determines which edge and vertex each GPU thread processes

during the edge and vertex scheduling sub-steps. Since the gather step han-

dles all the imbalanced tasks by processing incoming edges of each vertex,

the apply sub-step becomes well-balanced, as it operates independently of

other vertices or edges. Consequently, vertex scheduling involves a straight-

forward mapping of vertex IDs to GPU threads. In contrast, graph processing

schedules [7, 8, 13, 14] focus on balancing the scheduling of imbalanced edges.

This schedule abstraction also emphasizes defining a unified interface for all

schedules discussed in Chapter 2.1.2, enabling the next edge to be scheduled

after finishing the current edge scheduling sub-step.

To develop a generic schedule interface, this work analyzes the schedules

described in Chapter 2.1.2 and designs the schedule interface as presented in

Table 2.2. Since these schedules aim to balance workloads across GPU threads

during edge scheduling, the abstraction is divided into two core interfaces:

edge scheduling and load balancing. To further enhance coverage, extendabil-

ity, and efficiency, the proposed interfaces include additional arguments for

handling the frontier and direction.

Abstraction for edge scheduling: All schedules require scheduling the next

edge for each GPU thread at the start of the gather step. Thus, the schedule in-
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terface should include a method such as getNextEdgeID that takes the thread

ID as an argument and returns the next edge ID for the gather step. Addition-

ally, getNextEdgeID includes a variable (state) that indicates the scheduling

state, enabling the framework to determine whether scheduling is complete

or if an iteration has been skipped.

Abstraction for load balancing: To mitigate the synchronization overhead

of EM and the imbalance issues in VM, complicate schedules such as WM or

TWCE shared graph topology using global or shared memory. When start-

ing each iteration, these schedules collect neighboring edges of vertices at

the warp, CTA, or kernel level, depending on the schedule, and map these

edges evenly. Since the neighboring edges are stored in memory, the abstrac-

tion provides distribution interfaces like initGlobal and initShared, along

with arguments (shared_buffer and edge_list) that pass distribution results to

the getNextEdgeID method. For instance, TWC can use initGlobal to generate

global queues for vertices with low, medium, and high degrees in global mem-

ory, while STRICT uses it to gather edges of frontier vertices and distribute

them across CTAs. Similarly, initShared allows WM, CM, and TWCE to create

shared IDs and degrees (as shown in Figure 2.1) and TWCE to form queues

for small, medium, and high-degree vertices in shared memory. VM and EM

can also configure edge ID ranges using initShared and store the results in

edge_list.

Frontier argument: To perform graph processing efficiently, frameworks

analyze the frontier, a subset of vertices to process during each super-step, in-

stead of processing all vertices. To support this, the schedule abstraction intro-

duces an frontier argument to the initGlobal and initShared methods. Fur-
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Table 2.2: GRAssembler schedule interface specifications.

Method Method Description
Schedule Interface

void initGlobal (Frontier& frontier,
bool isIn)

Initialize frontier in global memory for
schedule
∗ frontier: frontier of the current iter-
ation, isIn: direction of edge traverse
(PUSH/PULL)

void initShared (int tid, Frontier&
frontier, bool isIn, int* shared_buffer,
int* edge_list)

Initialize frontier in shared memory
for sche

∗ shared_buffer: pointer of pre-
defined shared memory for schedule,
edge_list: set of edges to execute in the
current block

state getNextEdgeID (int tid, bool isIn,
int* shared_buffer, int* edge_list,

Schedule neighboring edges for cur-
rent thread, returning edge id

int& vid, int& eid)

thermore, various frontier structures—such as queues, bitmaps, bytemaps,

and counters—are provided to help the framework choose the most suitable

representation. The frontier argument interface allows seamless manipula-

tion of frontiers regardless of their underlying data structure.

Direction argument: When performing VM, we can determine the traver-

sal direction based on what is considered a neighbor: incoming edges (PULL)

or outgoing edges (PUSH). Even though EM is not affected by the traversal di-

rection, we include direction information as an argument for the method to

accommodate VM and other more complex scheduling.

2.3.2 Storage Format Abstraction

To suggest storage format interface, this work begins by analyzing the storage

formats detailed in Chapter 2.1.3 and proposes the storage format interface
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Table 2.3: GRAssembler storage format interface specifications.

Method Method Description
Storage format Interface

void getNeighbor (int vid, bool isIn,
int& begin, int& end)

Return the start and end positions of
edge_list of target vertex vid. Note that
storage format interface also receives
direction information.

void getEdge (int eid, int vid, bool isIn,
int& src, int& dest, WT& weight)

Return the source and destination ver-
tex IDs along with the edge weight for
a given edge ID (eid)

bool searchVID (int eid, bool isIn, int&
vid)

Obtain a vertex ID (vid) corresponding
to a specific edge ID (eid). This method
returns the destination vertex ID for
the Pull direction and the source ver-
tex ID for the Push direction.

void initTopology (bool isIn, Frontier
&old, Frontier &new)

Initialize virtual storage format for
each super-step

TT topologyGather (int src_id, int
dest_id, WT weight)

Return pre-gathered data stored in the
virtual storage format.

Table 2.4: GRAssembler algorithm interface specifications.

Method Method Description
Algorithm Interface

void initVertexValue (int vid) Set the initial vertex value
TT gather (int src_id, int dest_id, WT
weight)

Gather information from an edge
(src_id, dest_id) for the destination
vertex

bool sum (int dest_id, TT data) Integrate gathered data for a destina-
tion vertex (dest_id)

bool apply (int vid) Update destination vertex value us-
ing the collected data from the gather
method

bool filter (int vid) Exclude a vertex (vid) from the fron-
tier filter method. The filtered result
returns TRUE.

bool checkDirection (int numOfVer-
tices, int numOfFrontier)

Change the direction of the next itera-
tion with base frontier information

WT getNewGlobalThreshold (WT
oldThreshold)

Update the next weight threshold

24



described in Table 2.3. In this context, WT and TT represent types for edge

weight, and temporary data exchanged between the gather and sum steps.

FrontierType is a tunable data structure in GRAssembler for frontiers, which

can take forms such as a queue, bitmap, bytemap, or counter. Given the spar-

sity of graph topology, various compression schemes are commonly applied

to storage formats. To effectively support these schemes while enabling both

fundamental storage format access and advanced storage format access, this

work introduces storage format interfaces based on three abstractions: stor-

age format data access, fast data access, and virtual topology access.

Abstraction for storage format data access: Since the purpose of a stor-

age format is to represent graph topology, the primary operation of the stor-

age format interface involves returning the incoming and outgoing edges for a

vertex and identifying the source and destination vertices for a given edge. To

achieve this, the interface defines two core methods: getNeighbor and getEdge.

The getNeighbor method retrieves the edge list for a vertex ID (vid) as a range

of indices (begin and end) in the edge array. To specify whether incoming or

outgoing edges are required, getNeighbor takes a (isIn) to indicate direction.

The getEdge method provides details about an edge(srcvertexid, destvertexid,

weight), for a given edge ID (eid).

Abstraction for fast data access: Compression schemes such as CSR or

Tigr [19] store only one vertex ID for each edge (source or destination) to con-

serve memory. To reconstruct the complete edge information, frameworks

typically perform a computationally expensive binary search on the ptr ar-

ray. However, since most schedules (excluding EM in Chapter 2.1.2) generate

edge lists through getNeighbor for a base vertex, the framework already has
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access to the missing information during the super-step. As a result, the base

vertex ID can be used directly, eliminating the need for a binary search.

To prevent unnecessary additional computations, this work separates the

getEdge functionality into two methods: searchVID and getEdge. The searchVID

method performs a search operation on the ptr array for neighboring edges

to determine the base vertex ID (vid) for a given edge ID (eid). The getEdge

method then uses the base vertex ID (vid) and direction (isIn) as inputs. If

the base vertex ID is known within the super-step, the searchVID step can be

skipped with the help of compiler optimizations.

Abstraction for virtual topology access: To enable diverse access pat-

terns, such as non-contiguous edge list access, this abstraction introduces vir-

tual topology access through initTopology and topologyGather. The initTop-

logy method initializes the virtual topology for each super-step and creates a

new frontier, while topologyGather wraps the gather method in the algorithm

interface to operate on the virtual topology.

For example, in a blocked layout containing multiple sub-graphs, a single

real vertex may be represented by multiple virtual vertices distributed across

the sub-graphs. Using initTopology, a storage format developer can generate

these virtual vertices and their associated edge lists, enabling sequential ac-

cess to edges across sub-graphs, even if the edges are not sequentially stored

in the real topology.

initTopology and topologyGather allow the framework to process contin-

uous edge lists with temporary data, as seen in Cusha [17]. After generating

a virtual storage format for the temporary data via initTopology, the frame-

work can gather neighboring edge data by continuously accessing the virtual
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edge list using topologyGather.

2.3.3 Algorithm Abstraction

A graph algorithm can consists of four different operations: gather, sum, apply,

and scatter, as described in Chapter 2.1.1. This work introduces algorithm in-

terfaces, including gather, sum, and apply, excepting scatter. The gather func-

tion gathers information for the destination vertex (destid) generated using an

edge (src_id, dest_id, weight). The sum function aggregates the gathered results

(data). Template types are used for edge weight (WT ) and gathered informa-

tion (TT ) to allow flexibility in defining the types for edge weights and gath-

ered data. The apply function updates the value of a vertex identified by its

ID (vid) after finishing gathering all the information from neighboring edges.

To inform the graph processing framework of updated vertices, both sum and

apply return a boolean value. When a returning value is true, the framework

invokes the filter method on the vertex and adds the vertex to the frontier

based on filtered results. Additionally, this work provides initVertexValue to

initialize vertex values at the start of the graph processing.

Removing redundant operations in scatter: The scatter operation involves

activation, filtering, and fan-out edge processing. By leveraging the return val-

ues of the gather and apply functions, the activation operation is embedded

into the graph processing framework, eliminating redundant activation tasks

in gather, apply, and scatter. Furthermore, since the fan-out edge processing

in the current iteration has the same semantics as the gathering operation in

the next iteration, this work modifies the gather function to handle fan-out for

updated values in the next super-step. As a result, only the filter function is
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needed.

Abstraction for flexible execution: Certain algorithms, such as BFS and

Delta-SSSP, dynamically adjust their processing direction between pull and

push or update vertex values only if they exceed a dynamically changing

threshold. To support such flexibility, this work introduces two methods: check-

Direction and getNewGlobalThreshold. The checkDirection method allows an

algorithm to decide the processing direction dynamically based on the fron-

tier size during each super-step. The getNewGlobalThre-shold method enables

an algorithm to update the threshold value from its previous value.

2.3.4 Assembling Abstract Interfaces

The newly proposed abstract graph processing model integrates the sched-

ule, storage format, and algorithm interfaces to process a graph. As shown in

Figure 2.6a, this approach enables developers to independently implement

their schedule, storage format, and algorithm using the respective interfaces

outlined in Table 2.2, Table 2.3, and Table 2.4. Using these interfaces, the ab-

stract graph processing model described in Algorithm 2.1 performs a super-

step iteration on a given graph with frontier. The model comprises two main

phases: the gather step (Line 2 to 25) and the apply step (Line 26 to 30).

To handle storage formats like DIA and ELL that require additional layout-

specific processing, the model iterates across multiple storage formats (Line 2).

The edge processing begins by initializing the storage format and global mem-

ory (Line 3 to 4), followed by the launch of GPU kernels. During kernel execu-

tion, GPU threads collaboratively initialize shared memory once per kernel

invocation (Line 7).
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(a) Development model of this work

(b) Example codes for different schedules and storage formats

Figure 2.6: Development model and its example codes used in the GRAssem-
bler framework proposed in this work. (a) illustrates the newly proposed de-
velopment model, which fully decouples the schedule, storage format, and
algorithm from the processing model. (b) provides example codes for sched-
ules (VM, EM) and storage formats (COO, CSR, ELL) used in Figure 2.4. With the
complete decoupling of schedule and storage format, developers only need to
implement M + N options to support all M x N combinations of M schedules
and N storage formats.
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Once global and shared memory is initialized, the gather step iterates over

a while loop to execute sub-steps: edge schedule, storage format access, gather,

and apply. Through interaction with schedule, the model retrieves an edge ID

(Line 10) and determines whether to terminate or skip the current iteration. It

then interacts with storage format to fetch the source and destination vertex

IDs and the weight of the edge (Line 16). If the source vertex is inactive, the

model skips the iteration (Line 17). The algorithm interface is then used to

perform gather and sum operations (Line 20). If sum updates the destination

vertex value, the thread adds the destination vertex to the output frontier

(Line 21).

After completing the gather step, the model proceeds to the apply step.

A GPU kernel is launched to execute the apply operation, and if a vertex is

updated, it is added to the output frontier (Line 26 to 30).

2.4 GRAssembler Framework

Figure 2.7 presents our framework, GRAssembler, which is composed of three

primary components: a graph builder, a tuner, and a runtime. To identify the

optimal combination, the tuner iteratively evaluates various tuning options

using the runtime. The graph builder transforms raw input graph data into

the selected storage format format. The runtime executes graph processing

tasks by interacting with the GRAssembler library, where schedule, storage

format, and algorithm implementations are developed.

GRAssembler tuner systematically searches for the best tuning options,

including schedules and storage formats, for a specific algorithm and graph
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Algorithm 2.1: Processing model of GRAssembler
Input: Sche : Schedule

Layouts : Storage formats
Alg : Algorithm
ASetin : Input frontier

Output: ASetout : Output frontier
1 Function Super-Step (Sche, Alg, Layouts, ASetin, ASetout) :
2 foreach Layout ∈ Layouts do
3 Layout.initTopology (...)
4 Sche.initGlobal (...)
5 foreach kernel ∈ Sche.KernelSet do
6 foreach thread ∈ kernel do
7 Sche.initShared (...)
8 while true do
9 // Edge Schedule Step

10 (cond, eid, vid)← Sche.getNextEdgeID (thread, ...)
11 if cond = terminate then
12 break
13 else if cond = skip then
14 continue
15 // Storage format Access Step
16 (src, dest, weight)← Layout.getEdge (eid, vid ...)
17 if Asetin.check(src) == false then
18 continue
19 data← Alg.gather (src, dest, weight)
20 if Alg.sum (dest, data) then
21 ASetout.add(dest)
22 end
23 end
24 end
25 end
26 foreach thread ∈ vertexKernel do
27 vid← thread
28 if Alg.apply (vid) then
29 ASetout.add(vid)
30 end
31 end
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dataset. The tuner consists of a manager, storage format selector, scheduling

selector, and compiler. The manager identifies the tuning options that can

be adjusted for a given algorithm. For instance, the BFS algorithm dynami-

cally modifies its processing direction (push or pull) based on the number of

active vertices by using checkDirection. The manager recognizes the use of

checkDirection in the algorithm, creates two separate sets of tuning options

by excluding the direction option from the tunable set, and then explores the

tuning options for each direction independently. Within the tunable options,

the storage format selector focuses on choosing storage format-related config-

urations, while the scheduling selector selects options related to schedules, in-

cluding the frontier type and the graph processing direction. Finally, the com-

piler generates and optimizes the graph processing program using the chosen

tuning options and the given algorithm.

GRAssembler graph builder creates a storage format from raw graph

input based on the specified storage format option. During this process, the

GRAssembler graph builder divides the graph into subgraphs and merges them

into a blocked graph to enhance data locality. As this process can often take

longer than kernel execution, the resulting layout is saved as separate files to

be reused across iterations.

GRAssembler runtime runs the assembled graph processing program fol-

lowing the super-step procedure described in Algorithm 2.1. The runtime ini-

tializes vertex values and the frontier data structure, executes the super-step

algorithm defined in Algorithm 2.1, and invokes checkDirection and getNewGl-

obalThreshold to control subsequent super-step iterations. The runtime ter-

minates execution if the output frontier is empty.
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GRAssembler library consists of separate implementations of schedules,

storage formats, and algorithms.

2.4.1 Compiler Optimization

Useless interface elimination: While the proposed abstract interfaces com-

prehensively cover all schedules, storage formats, and algorithms, certain

combinations of schedule, storage format, and algorithm may render some

interfaces unnecessary. If an implementer leaves the function body in Table

2 empty, GRAssembler identifies the emptiness by checking if the function

body consists only of a terminator instruction and eliminates the associated

call sites. For instance, the VM schedule does not require initGlobal, the COO

storage format does not utilize searchVID, and the BFS algorithm does not in-

voke apply. To minimize graph processing latency, the GRAssembler compiler

analyzes the library functions and removes redundant function calls.

Atomic operation elimination on vertex value: In graph processing, mul-

tiple edges are often loaded and vertex values updated concurrently, neces-

sitating the use of atomic operations in sum to ensure correctness. However,

if a vertex value is modified by only one thread, atomic operations are un-

necessary. GRAssembler conservatively removes synchronization operations

when all three of the following conditions are met: First, the initTopology

method does not access its frontier argument, ensuring no aliasing of vertices

or edges. Second, the getNextEdgeID method maps thread IDs directly to ver-

tex IDs, guaranteeing that only one thread can access a given vertex. Third,

the super-step direction is PULL, permitting the mapped thread to perform

the vertex update exclusively. For example, when the COO storage format op-
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erates in the PULL direction with the VM schedule, no multiple GPU threads

attempt to update the same vertex, making it safe to avoid atomic operations.

The GRAssembler compiler analyzes the library to identify synchronization

points that can be safely removed and transform atomic operations into non-

atomic ones only when the constraints are satisfied.

2.4.2 Tuning Space of GRAssembler

Table 2.5 compares the tuning options available in GRAssembler with those

in existing frameworks [6, 7, 8, 11]. Unlike previous frameworks, GRAssem-

bler offers the broadest range of schedules and storage formats and intro-

duces new features such as storage format auto-tuning and CTA size optimiza-

tion. For instance, while GraphIt [8] provides 336 tuning combinations—the

largest prior to this work—GRAssembler supports 4480 combinations for

tuning options. Notably, because some options, such as CTA size, are numeric

and counted here with only two values, the true number of possible combina-

tions is far greater than 4480. Below are additional tuning options available

in GRAssembler, complementing the schedules and storage formats:

CTA size influences the ratio of active warps during GPU execution. Ad-

justing the CTA size helps memory-intensive applications hide memory la-

tency effectively [28]. This tuning option is newly introduced in this work.

Blocking enhances graph locality by employing tiled graph partitioning.

Gluon [15] introduces various partitioning strategies based on traversal di-

rection (axis and dimension) and partitioning standard (edge or vertex), and

these strategies have been integrated into GRAssembler. Blocking is especially

beneficial for topology-driven applications where traversing all edges in a sin-
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Table 2.5: The optimization space available in modern GPU-based graph pro-
cessing frameworks

GRAssembler GraphIt[8] Gswitch[7] Gunrock[6] SEP-
Graph[11]

Storage for-
mat Auto-
tuning

O X X X X

Storage for-
mat

COO, CSR, ELL,
DIA, Gshard

CSR COO, CSR COO, CSR COO, CSR

CTA Size Opti-
mization

O X X X X

Blocking O O X X X
Schedule VM, EM, WM,

CM, TWC,
TWCE, STRICT

VM, EM,
WM, CM,
TWC, TWCE,
STRICT

WM, CM,
TWC,
STRICT

VM, EM,
TWC,

CM

frontier Data
Structure

Queue,
BitMap,
ByteMap,
Counter

Queue,
Bitmap,
ByteMap

Queue,
Bitmap

Queue,
Bitmap

Queue

Direction Opti-
mization

O O O O O

Frontier Dedu-
plication

O O X O O

Frontier Or-
dering

O O O O O

Number of
Available Op-
tions

4480 336 68 96 64
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gle iteration is crucial, such as in PageRank.

Frontier data structure defines how active vertex sets are represented.

This work supports multiple options, including queue, bitmap, bytemap, and

counter. A queue stores active vertex IDs, while maps represent activation

states as boolean values. These diverse data structures are particularly suited

for data-driven or model-driven applications, such as BFS or Delta-SP. How-

ever, some frameworks optimized for topology-driven applications that tra-

verse all edges continue to use simpler structures. For applications that do not

require detailed active edge information, this work introduces the counter, a

novel data structure that only tracks the size of the frontier by incrementing

its value for each ASetout.add(vid) call. The counter is particularly efficient for

applications where the frontier is used solely to determine emptiness.

Direction specifies whether the neighbor edge list is accessed based on

the source vertex (push) or the destination vertex (pull) [10].

Frontier deduplication eliminates redundant computations [8]. In graph

processing, the same vertex may be activated multiple times, leading to un-

necessary work. By deduplicating these activations, redundant computations

are removed, although this incurs a deduplication cost. Deduplication is manda-

tory when duplication impacts correctness.

Frontier ordering determines whether an active vertex is processed in

the next iteration or deferred, based on a global threshold. This option is par-

ticularly advantageous for applications like Delta-SSSP [29, 30].
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Figure 2.7: Overview of GRAssembler. GRAssembler consists of a tuner,
builder, and runtime. The GRAssembler runtime uses libraries structured as
schedule, storage format, and algorithm interfaces.
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2.5 Evaluation

We evaluates the performance of GRAssembler by comparing it against ex-

isting graph frameworks [7, 8] using four algorithms across nine graphs. The

evaluation also showcases the extendability of GRAssembler through two case

studies.

The experiments were conducted on an NVIDIA GeForce RTX 3090 GPU,

which features 10,496 CUDA cores, 82 streaming multiprocessors, 6MB of L2

cache, and 24GB of memory. The host system uses an Intel(R) Core(TM) i7-8700

CPU. The datasets used for the evaluation include nine graphs commonly used

in prior works, such as GraphIt [8] and Gunrock [6]. These graphs are soc-

orkut (OK)[31], uk-2005 (UK)[31], soc-twitter-2010 (TW)[31], soc-LiveJournal

(LJ)[27], indochina-2004 (IC)[27], hollywood-2009 (HW)[27], roadNetCA (RN)[27],

road usa (RU)[32], and road central (RC) [27].

The evaluation focuses on four algorithms: PageRank (PR)[33], Connected

Components (CC)[34], Breadth-First-Search (BFS)[35], and Delta-SSSP (DS)[30].

Each algorithm showcases unique operational features. PR and CC update ver-

tex values in every super-step, representing consistent update workloads. BFS

dynamically adjusts its processing direction (push or pull) based on the ratio

of the frontier, making it an effective test for checkDirection. Delta-SSSP in-

troduces dynamic thresholding by modifying the delta value, which is imple-

mented via the global threshold in the algorithm interface.

For comparison, this study evaluates GRAssembler against GraphIt [8] and

GSwitch [7]. Both frameworks are known for their exploration of diverse graph

processing options, including direction control, schedule selection, frontier
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data structures, and active vertex ordering.

2.5.1 Overall Performance

Figure 2.8 demonstrates that GRAssembler achieves significant performance

improvements for most applications. Specifically, GRAssembler attains 2.21x

and 1.30x speedups compared to GSwitch and GraphIt, respectively. In detail,

it achieves speedups of 2.33x, 1.84x, 1.66x, and 3.38x over GSwitch, and 1.52x,

1.77x, 0.99x, and 1.07x over GraphIt for PR, CC, BFS, and DS, respectively.

By leveraging function templates and minimizing function arguments, Gras-

sembler reduces the overhead associated with assembling abstract interfaces.

First, it reduces the number of function arguments by utilizing global sym-

bols. Second, it replaces function pointers with class templates and function

templates. Passing device function pointers to GPU kernels complicates com-

piler analysis, which limits optimization opportunities such as inlining. Using

function templates resolves polymorphic calls at compile time, enhancing the

effectiveness of compiler optimizations.

For PR and CC, GRAssembler significantly outperforms other frameworks,

primarily due to its CTA size optimization. GPUs perform better with specific

thread and block sizes for coalesced memory accesses. For example, using

1024 threads achieves better performance than 512 threads for the IC and

RC datasets in PR. The CTA size optimization is particularly beneficial for the

EM schedule due to its efficient coalesced memory access to edge data. For in-

stance, in the PR algorithm on the UK dataset, CTA size optimization enhances

the performance of EM with COO, CSR, ELL with COO, and Block-COO by 71

GRAssembler also demonstrates superior performance for the CC algo-
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Figure 2.8: A comparison of performance between GRAssembler and state-of-
the-art graph processing frameworks, including GraphIt and GSwitch. Each
graph illustrates the speedups achieved over GSwitch. The evaluation utilizes
four algorithms applied to nine graphs on an NVIDIA GeForce RTX 3090 GPU.
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Table 2.6: The optimal options of Figure 2.8

Alg Dataset Topology Schedule Direction Frontier Thread #

PR

LJ, HW Block-COO EM Push Counter 512
OK, TW Block-COO EM Push Counter 512

RC Block-COO EM Push Counter 1024
RN, RU CSR VM Pull Counter 512

IC CSR TWC Push Counter 1024
UK CSR TWCE Push Counter 512

BFS

RC, RU CSR TWCE Push Queue 512
RN CSR VM Push Queue 512

LJ, OK ELL + CSR VM Pull RQnB 512
ELL + CSR TWCE Push Queue 512

IC CSR VM Pull QnB 512
CSR TWCE Push Queue 512

TW CSR CM Pull RQnB 512
CSR TWCE Push Queue 512

UK CSR TWCE Pull RQnB 512
CSR TWCE Push Queue 512

HW CSR CM Pull RQnB 512
CSR STRICT Push Queue 512

CC

HW, RC, LJ, Block-COO EM Push Counter 512
TW, RU, OK Block-COO EM Push Counter 512

RN CSR VM Pull Counter 512
UK CSR TWCE Pull Counter 512
IC ELL + COO EM Pull Counter 512

DS

RN COO TWCE Push Queue 512
HW, RC CSR TWCE Push Queue 512
LJ, OK CSR TWCE Push Queue 512

TW, RU, UK CSR TWCE Push Queue 512
IC CSR CM Push QnB 1024
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rithm by identifying optimal storage format configurations such as CSR and

Block-COO, depending on the dataset. Additionally, the CC algorithm iterates

the super-step until no updates occur. Unlike GraphIt, which only supports

two frontier options (bitmap and bytemap) and must verify the activity sta-

tus of all vertices and the presence of active vertices in the set, GRAssembler

supports counters as frontiers. This eliminates the need to check all vertices,

thereby reducing termination overhead.

For BFS, GRAssembler adapts its tuning options based on the dataset, as

shown in Table 2.6. Unlike other algorithms, BFS dynamically switches be-

tween pull and push directions during execution. Consequently, the optimal

tuning configuration involves two sets of directions, schedules, and frontier

data structures for datasets such as LJ, OK, IC, TW, UK, and HW. However,

GRAssembler incurs higher overheads for BFS compared to other frameworks

due to the algorithm’s simplicity and the complexity of its tuning options.

Since the apply function in BFS is empty, the abstraction overhead dispropor-

tionately affects execution time. As a result, GRAssembler, with its more ex-

tensive abstractions, experiences greater overhead and lower performance

for BFS. To mitigate this, GRAssembler dynamically adjusts its schedule and

frontier structures based on the return value of the checkDirection function.

Incorporating intensive online tuning techniques [7, 36] that support more

than two dynamically changing options could further enhance BFS perfor-

mance.

Finally, GRAssembler surpasses other frameworks on the DS algorithm.

Table 2.6 presents the tuning options used for optimal performance. For ex-

ample, QnB refers to using a queue for the input frontier structure and a map
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for the output frontier structure, while RQnB indicates using a reverse queue

for the input frontier structure.

2.5.2 Tuning Performance and Cost

GRAssembler identifies the optimal tuning options that result in the shortest

execution time. Compared to the second-best solution, GRAssembler achieves

speedups of up to 2.04times and a geomean speedup of 1.16times. Notably,

52.78% of the second-best tuning results utilize storage formats that differ

from the optimal ones, underscoring the necessity of exploring diverse tun-

ing options to find the best configuration. The execution times for the opti-

mally tuned applications evaluated range from 0.19 milliseconds to 1.17 sec-

onds, with an average of 33.75 milliseconds. These represent speedups rang-

ing from 1.36x to 450.33x (a geomean speedup of 21.48x) compared to the

worst-case execution times, translating to an average reduction of 401.63 mil-

liseconds and up to 2.7 seconds. Detailed performance results for different

tuning options are provided as a case study in Chapter 2.5.5.

Tuning with GRAssembler takes up to 2 hours for each application and

dataset, compared to 10 minutes for GraphIt. This longer duration is because

GRAssembler evaluates 14 times more candidates than GraphIt. However, the

tuning time gap is less than the factor of 14, as GRAssembler reduces over-

head by terminating candidates early if their latency exceeds the best-known

result. Despite the relatively high tuning cost compared to the execution time,

tuning graph processing options remains critical since graph applications are

often executed multiple times at runtime. Additionally, if the auto-tuner could

leverage prior tuning results to eliminate inefficient candidates, the tuning
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cost for GRAssembler could be significantly reduced.

2.5.3 Line of Code Analysis

GRAssembler separates schedule and storage format into distinct interfaces,

resulting in modularized implementation. The total lines of code for the sched-

ule implementation amount to 1540 lines, distributed as follows: VM (82), EM

(84), CM (185), WM (141), TWC (292), TWCE (238), STRICT (395), and Interface

Utilities (123). Similarly, the storage format implementation comprises 644

lines, with contributions from COO (114), ELL (118), CSR (131), Gshard (166),

and Interface Utilities (115).

In contrast, GraphIt implements its processing model with 1044 lines of

code. Of this, 64% (669 lines) are devoted to device functions that access and

manipulate graph data. Adding a new storage format in GraphIt requires an

in-depth understanding of its processing model and modifications to a signif-

icant portion of the model’s codebase, increasing the complexity of extending

its functionality.

2.5.4 Abstraction Overhead

To evaluate the overhead introduced by the GRAssembler interface abstrac-

tion and integration, this work compares the execution times of GRAssembler

and GraphIt using identical tuning options. The selected tuning options cor-

respond to those used for the optimal GraphIt execution. The results indicate

that GRAssembler incurs a 21.1% longer geomean processing time compared

to GraphIt. Specifically, PR, CC, BFS, and DS exhibit 15.6%, 15.2%, 34.0%, and

20.0% longer processing times on geomean, respectively.
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Figure 2.9: Extending the storage format library. (a) illustrates the speedup
of Block-COO compared to COO using the GRAssembler interface. (b) presents
the performance improvement of the GShard storage format over the original
GShard implementation in Cusha [17].

The results highlight that GRAssembler experiences higher overhead for

BFS than other applications. This is attributed to BFS’s relatively simple com-

putation algorithm combined with its more complex optimal tuning options.

The abstraction overhead is more pronounced for BFS, where the lightweight

computations amplify the impact of additional abstraction layers.

2.5.5 Case Study 1: Extendability

This case study highlights the extendability of GRAssembler by detailing the

implementation of two example storage formats. The results demonstrate that

GRAssembler achieves performance equal to or exceeding that of the original

implementations.

Block-COO: Blocking is a widely used optimization technique to enhance

data locality when accessing vertex values. As a case study, this evaluation de-

scribes how a blocked version of COO was implemented using the abstractions
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provided by GRAssembler. In a blocked graph, the neighbor edges of a vertex

are grouped into multiple edge lists, and virtual vertices are introduced to

represent these blocks. The GRAssembler interfaces, including getNeighbor,

getEdge, and searchVID, were adapted to handle this blocked representation.

The getNeighbor method was designed to return a sublist of the blocked edge

list, where the edges in the sublist correspond exclusively to the virtual ver-

tex assigned to that block. Figure 2.9a shows that the Block-COO implementa-

tion achieves up to a 4.53x speedup over COO when using Push and EM with-

out CTA optimization. This demonstrates that the proposed interface supports

seamless integration of blocked graph implementations. In contrast, while

GraphIt [8] supports blocking optimization, it lacks the ability to generate a

block-wise connected neighbor list for a vertex, restricting the application of

blocking optimization to EM scheduling alone.

Cusha: Cusha [17] introduces GShard, a storage format that reorders and

blocks edge data to enhance performance. The implementation of GShard on

GRAssembler follows a process similar to that of Block-COO. In the Cusha pro-

cessing model, the separated gather and sum operations are performed during

the apply step.

GRAssembler provides support for topologyGather, which enables the in-

tegration of GShard within its framework. The GRAssembler compiler detects

the presence of topologyGather, replaces the gather operation in the process-

ing model with topologyGather, and incorporates the original gather oper-

ation into the initTopology implementation. Figure 2.9b demonstrates that

the GRAssembler implementation delivers performance comparable to or ex-

ceeding that of the original Cusha implementation. One contributing factor is
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that the GRAssembler implementation avoids asynchronous updates, which

can lead to unnecessary synchronization during atomic updates. This reduc-

tion in synchronization overhead improves processing times, particularly for

the TW, IC, and HW datasets.

2.5.6 Case Study 2: Impact of Tuning

Figure 2.10 compares the performance of various tuning options. The eval-

uation includes four storage formats (COO, CSR, ELL+COO, Block-COO), two

schedules (EM, TWCE), and two directions (Push, Pull) as part of the tuning

configuration. Figure 2.10 presents the sorted performance results across these

different tuning combinations. The comparison reveals three key character-

istics of graph processing performance.

First, expanding the tuning space is essential for achieving optimal per-

formance. The Block-COO storage format demonstrates its superiority as it is

part of the best-performing tuning configuration, delivering nearly twice the

performance of the second-best configuration (CSR, TWCE, and Pull). Since

existing frameworks lack support for Block-COO, they are unable to discover

this optimal tuning option.

Second, it is critical to account for the synergistic impact of combining

tuning options. While the Block-COO storage format contributes to the best-

performing configuration, it is also part of the worst-performing configura-

tion, with a performance gap of 4.7x. The results highlight that the way stor-

age format, schedule, and other options are combined can significantly influ-

ence processing time. Neglecting even one tuning option could lead to missed

opportunities for substantial performance improvements.

47



Figure 2.10: Comparison of performance for various tuning options for PR on
LJ. The evaluation includes four storage formats (COO, CSR, ELL+COO, Block-
COO), two schedules (EM, TWCE), and two directions (Push, Pull). The baseline
configuration is set to (Block-COO, TWCE, Push).

Third, incorporating diverse tuning options beyond just schedule and stor-

age format is equally important. For instance, the direction has a significant

effect on performance. By integrating a variety of tuning options, including

direction, GRAssembler is able to achieve superior performance outcomes.

2.5.7 End-to-End Comparison with Existing CPU and GPU Framework

The table shows the end-to-end performance comparison between GRAssem-

bler and three different graph processing frameworks: DGL [37, 38], Priority-

Graph [39], and cuGraph [40]. We use Deep Graph Library (DGL) and Prior-

ityGraph as CPU baseline. DGL is widely used for graph analysis and GNNs,
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Table 2.7: End-to-End Performance Comparison with DGL CPU [37, 38], Prior-
ityGraph [39], and Cugraph [40](Second).

PageRank (20 iterations) BFS
DGL PGraph cuGraph GRAssembler DGL PGraph cuGraph GRAssembler

UK 0.27 0.03 0.05 0.01 0.11 0.01 0.14 0.01
LJ 3.11 1.38 0.11 0.06 2.63 0.03 0.31 0.05
HW 1.82 0.87 0.12 0.08 1.39 0.12 1.64 0.05
IC 6.10 1.97 0.32 0.23 6.80 0.23 OOM 0.14
RC 0.23 0.08 0.01 0.01 6.10 0.08 0.12 0.02
OK 5.17 2.31 OOM 0.15 3.55 0.03 1.55 0.09
TW 30.00 15.37 OOM 0.53 28.48 0.22 OOM 0.26

and PriorityGraph supports OpenMP parallelization using the Ligra [41] li-

brary. The GPU baseline is cuGraph 24.12 with CUDA version 12.0. The CPU

evaluation is conducted on a server with two Intel(R) Xeon(R) Silver 4210

CPUs @ 2.20GHz and 128GB of memory. Since GRAssembler targets optimiza-

tion within a GPU, we evaluate its performance on a single CPU server, not a

multi-cluster CPU server. The GPU evaluation is performed on an Nvidia RTX

4090 GPU paired with an AMD Ryzen 9 3950X 16-core processor and 128GB of

memory. Note that the GPU evaluation with cuGraph and GRAssembler shows

the end-to-end performance comparison, factoring in host-to-device memory

copy overhead and all initialization processes required to start the applica-

tion.

Chapter 2.5.7 shows that GRAssembler shows better overall performance

than other frameworks. Since PageRank (PR) accesses all edges 20 times, it

involves relatively more computation than BFS. Consequently, GPU frame-

works outperform CPU frameworks, DGL and PriorityGraph. With the BFS

algorithm, GRAssembler also exhibits good performance for the HW, IC, and

RC benchmarks, whereas PriorityGraph performs well on the UK, LJ, TW, and
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OK benchmarks compared to GPU-based graph processing frameworks. Since

BFS is a traversal algorithm, if the diameter of the root node (i.e., the number

of depths from the root vertex) is small, the process cannot have enough work-

load to conceal memory transfer overhead. For instance, UK, LJ, TW, and OK

have diameters of only 7, 7, 17, and 12 with root vertex 1, respectively, so CPU

frameworks demonstrate better performance.

GRAssembler shows 1.86x and 12.26x speedups compared to cuGraph with

PR and BFS, respectively. We believe this performance gain comes from auto-

tuning with diverse options. First, not all combinations of GRAssembler out-

perform cuGraph. For example, LJ shows 1.76x better performance than cu-

Graph, but the combination of CSR and VM takes longer than cuGraph. This is

because LJ has a less skewed graph, where the combination of CSR and WM

creates better synergy. Second, the performance gain of BFS comes from di-

rection optimization [35], which cuGraph does not seem to perform. The ab-

sence of this optimization has a significant impact on social graph datasets

such as HW, LJ, and OK. Since social graphs exhibit heavy-tailed distribu-

tions, they contain more super-nodes (nodes with many edges, such as users

with many friends or followers) and require direction changes (Push -> Pull)

due to the presence of many active nodes in the middle of iterations. Third,

GRAssembler can support larger graphs compared to cuGraph. CuGraph en-

counters Out-of-Memory errors while processing OK and TW with PR, as well

as TW and IC with BFS. However, GRAssembler can execute these inputs. Al-

though GRAssembler faces Out-of-Memory errors with the OK and Gshared or

COO format, alternative storage formats, such as CSR, can be used to resolve

this issue.
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2.6 Summary

Our insight into decoupling schedule and storage format from graph process-

ing simplifies the expansion of the graph tuning space. Based on this insight,

this work introduces a graph processing abstraction comprising schedule,

storage format, and algorithm, grounded in the characterization of graph pro-

grams. Subsequently, we propose GRAssembler, which implements our pro-

cessing model and abstract interfaces, incorporating various graph process-

ing optimizations.
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Chapter 3

CR2: COMMUNITY-AWARE COMPRESSED REGULAR

STORAGE FORMAT

This chapter introduces a novel graph storage format called CR2, community-

aware, and degree-ordered subgraphs representation. To achieve high per-

formance, CR2 leverages the locality of skewed graph structures by cluster-

ing densely connected vertices into community-aware subgraphs. By decom-

posing vertex IDs into cluster IDs and local IDs, CR2 represents each vertex

using only its local ID, significantly reducing memory usage. To address the

SIMT structure of GPUs, CR2 further partitions the graph into degree-ordered

subgraphs, where all vertices within a subgraph have a uniform, regularized

number of edges. This regularization eliminates the need for offset arrays in

sparse data compression, enabling fine-grained workload balancing across

GPU warps while maintaining lower memory usage. The combination of these

features makes CR2 as an effective solution for compressing graphs for GPU

processing.

3.1 Necessity of A New Storage Format

As demonstrated in Chapter 2, GRAssembler effectively identifies better graph

processing combinations through autotuning, outperforming existing approa-

ches. While exploring various schedule, storage format, and optimizations
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for Chapter 2, we observed that workload imbalance is one of the most criti-

cal challenges in GPU-based graph processing, especially when handling real-

world graphs exhibiting skewed characteristics. These graphs often follow a

heavy-tailed or power-law distribution, where a small subset of vertices is

connected to a disproportionately large number of edges [21]. This skewed

vertex degree distribution leads to workload imbalances on GPUs, reducing

resource utilization efficiency. To address this problem, both schedule and

storage format can be used. schedule redistributes imbalanced edges across

parallel threads, while storage format regulates edge distribution using stat-

ically predefined structures. GRAssembler addresses this issue by exploring

various optimization combinations.

While exploring storage formats, we observed that storage format can be

further optimized by reconsidering getNeighbor. getNeighbordoes not need to

return all neighbor edges at once; instead, it is sufficient to return the edges

incrementally during the gather step. Regulating the neighbor edge set and

processing multiple neighbor edges in smaller chunks can help balance the

workload more effectively. This regulation particularly benefits applications

that iterate over all edges, such as PageRank.

Additionally, we observed that storage format plays a critical role in mem-

ory usage. As shown in Chapter 2.5.7, memory usage presents challenges when

processing large graphs on GPUs with limited memory capacity. To handle

such graphs, efficient memory management is essential. The interesting thing

is that getEdge only needs to return the necessary information, such as source

ID, destination ID, and weight. Thus, storage format does not need to store all

graph information in memory.
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Motivated by these observations, we began exploring advanced optimiza-

tions for storage format. To address workload balancing or memory usage in

graph algorithm processing, existing works [12, 16, 17, 19, 23, 24, 25, 26, 42,

43] have proposed various graph storage formats. However, these approaches

do not fully account for the skewed topologies of graphs or the SIMT architec-

ture characteristic of GPUs. Consequently, they suffer from intra-warp work-

load imbalances. To the best of our knowledge, no existing graph storage for-

mat simultaneously achieves fine-grained workload balancing, low memory

overhead, and high performance.

3.2 In-depth Analysis of Related Storage Formats

A storage format specifies the source and destination of graph edge data within

GPU memory. storage format plays a critical role in graph processing for three

main reasons. First, a storage format determines the arrangement of graph

data in memory, which directly impacts data locality. Second, it dictates the

memory footprint required to store and process the graph. With limited GPU

memory, a compact storage format enables the processing of larger graphs.

Third, a storage format influences how efficiently a GPU handles graph data.

By evenly distributing edges across threads, a storage format can mitigate

workload imbalances caused by the skewed structure of graphs. To optimize

data locality, minimize memory usage, and balance workloads, numerous

storage formats [12, 16, 17, 19, 23, 24, 25, 26, 42, 43] have been proposed.

In this chapter, we explore three representative storage formats used on a

GPU: Compressed Sparse Row (CSR), Cusha [17], and Tigr [19].
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Figure 3.1: Example graph and storage formats.CSR is the most widely used
storage format, while G-shards and Tigr are specifically designed for GPUs.
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Compressed Sparse Row (CSR) is a space-efficient storage format desig-

ned for sparse graphs. CSR stores neighbor edge information (incoming or

outgoing) of the base vertices(source or destination) in a single contiguous ar-

ray and maintains offset indices for opposite vertices (destination or source)

that point to its associated edges. CSR is designed to reduce the storage re-

quired for vertex IDs, so it uses less memory than other storage formats, such

as adjacency matrices or COO. Generally, CSR uses three arrays to represent

a graph:

● edge list: Contains each vertex’s incoming or outgoing neighbor stored

in a contiguous block.

● offset: Holds indices pointing to the ranges in the edge list correspond-

ing to each vertex. A vertex’s neighbors can be accessed by iterating through

the edge list from offset[vid] to offset[vid+1].

● weight: Stores the values or attributes associated with each edge.

Figure 3.1b shows how CSR represents the example graph using outgoing

direction in Figure 3.1a.

The most straightforward approach to processing CSR on a GPU involves

mapping each thread to a single vertex. However, this method often encoun-

ters challenges related to data locality and workload imbalance. Since CSR

does not account for the graph’s topology, it may fail to group densely con-

nected vertices together, resulting in reduced cache efficiency. Additionally,

because vertices have varying degrees, this strategy assigns threads work-

loads of unequal sizes. When warp consists of 32 threads, threads processing

vertices with fewer edges must remain idle until threads handling vertices

with more edges complete their tasks. This problem leads to the underutiliza-
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Figure 3.2: Inefficiency of CSR-based graph processing [43] when the physical
warp size is 8

tion of GPU lane.

The virtual warp-centric model (VWC) [43] assigns each vertex to a vir-

tual warp and allows the lanes within the warp to process the edges of the as-

signed vertex. However, VWC struggles to maximize GPU lane utilization due

to its statically fixed virtual warp size. Figure 3.2 illustrates scenarios where

VWC results in lane underutilization. For instance, when the virtual warp

size is set to 8, processing vertex 1 leaves six thread lanes idle (Figure 3.2a).

Conversely, with a virtual warp size of 4, processing vertices 1 and 2 within

separate virtual warps leaves five thread lanes unused (Figure 3.2b). While

smaller virtual warp sizes can enhance lane utilization, they also increase the

time required to process a single vertex. Additionally, smaller virtual warps

make sequential reading of the edge list within the warp more challenging.

G-Shards, proposed by Khorasani et al.[17], divides a graph into several
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Table 3.1: Theoretical memory requirements for various storage formats.
Here, V and E represent the sets of vertices and edges, respectively. The pa-
rameter f indicates the ratio of additional virtual vertices introduced in the
graph, while r represents the memory reduction achieved by the compressed
vertex IDs in CR2.

Representation Edge Representation Value
Vertex Edge

CSR [43] |E|+ |V |+ 1 |V | |E|
G-Shards [17] 2|E| |V |+ |E| |E|
Tigr [19] |E|+ (1 + ft)|V | |V | |E|
CR2 (1− r)|E|+ (1 + fc)|V | |V | |E|

sub-graphs known as shards[44], which serve as units for parallel computa-

tion [45]. Each shard processes a distinct subset of destination vertices. If Vi

represents the set of destination vertices in shard i, then ∪iVi encompasses all

vertices in the graph. Each shard stores a list of incoming edges in ascending

order based on source vertex indices using four arrays:

● dest id: Contains the indices of destination vertices.

● src id: Stores the indices of source vertices.

● src value: Holds values corresponding to each vertex in src id.

● weight: Contains values associated with each edge.

Figure 3.1c show how G-Shards represent the example graph in Figure 3.1a.

Although G-Shards improve lane utilization and ensure regular memory

access by allowing each thread to process edges alternately, they require sig-

nificantly more memory space than CSR. Table 3.1 compares the memory

requirements of different storage formats. Considering that the number of

edges is generally much larger than the number of vertices (Table 3.4), G-

Shards demands approximately three times more memory space than CSR. In

Figure 3.1c, the gray boxes highlight the additional data required by G-Shards
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compared to CSR. Given the limited memory capacity of GPUs, G-Shards may

not be suitable for processing large-scale graphs.

Tigr [19] addresses workload imbalance by virtually splitting an origi-

nal vertex into multiple virtual vertices and redistributing their edges. While

Tigr reduces workload imbalance across warps, it still encounters inter-warp

workload imbalance issues. Furthermore, similar to G-Shards, Tigr suffers

from significant memory overhead. The graph boxes in Figure 3.1d illustrate

the additional memory usage in Tigr compared to CSR. Although the extra

memory overhead appears small, Tigr duplicates each vertex for every par-

tition size. This duplication results in substantial memory usage for vertices

with very high degrees. For instance, in the soc-twitter-2010 dataset, the max-

imum vertex degree reaches 698k. With a partition size set to 8, this vertex

is duplicated over 82k times. Consequently, Tigr’s memory requirements far

exceed those of CSR.

In conclusion, to the best of our knowledge, none of the existing storage

formats for GPUs simultaneously improve workload balance and data locality

while minimizing memory usage.

3.3 Design of CR2

This work introduces CR2, a novel GPU-based storage format that is both comm-

unity-aware and degree-ordered. This chapter outlines the design objectives

of CR2 and explains the methods used to create community-aware and degree-

ordered subgraphs. Table 3.2 provides an overview of the terminology em-

ployed in this chapter, along with example values for a scenario where vertex
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IDs are represented using 8 bits.

3.3.1 Design Goals of CR2

Motivated by the limitations of existing storage formats, this work proposes

a novel GPU-based storage format designed to meet the following objectives:

First, the storage format should minimize GPU memory usage for storing graphs.

Reducing the memory footprint allows GPUs to efficiently process larger graphs.

Second, the storage format should leverage the inherent properties of input

graphs. Specifically, it should exploit the high locality of skewed graphs with

clustered edges to reduce memory usage and enhance performance. Third,

the storage format must align with GPU architectural characteristics (e.g., warp

size) to maximize performance in GPU-based graph processing frameworks.

A strong correlation between the storage format design and GPU architecture

will enable to achieve high performance without requiring extensive perfor-

mance tuning or optimization.

This work accomplishes these objectives through the use of community-

aware subgraphs and degree-ordered subgraphs, as detailed in Chapter 3.3.2

and Chapter 3.3.3.

3.3.2 Community-aware Subgraph

This work introduces community-aware subgraphs, leveraging the observa-

tion that many real-world graphs exhibit community structures, where most

vertices are densely connected within specific groups [46, 47, 48]. CR2 creates

these subgraphs by applying graph vertex reordering. Vertex reordering al-

gorithms, such as label propagation and hierarchical clustering [49, 50, 51],
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Table 3.2: Terminology about a target graph and CR2

Contents Terms Values in Figure 3.5

# of vertices |V | ∼ 2v 12
# of edges |E| 24

Vertex ID size M (M ≥ v) 8
Cluster size 2N × 2N 24 × 24

# of clusters 2v−N 3
Warp size 2w (= 25) 4 (= 22)

# of degree-n subgraphs w + 1 3
# of virtual vertices |Vv| (= (1 + fc)|V |) 16

reorder vertex IDs based on the graph’s structure, such as its community or-

ganization, and extract highly dense clusters along the diagonal of the adja-

cency matrix.

For example, Figure 3.4b depicts a real-world graph after reordering, based

on the graph shown in Figure 3.4a. The graph’s axes represent source and des-

tination vertices, and each dot indicates the presence of an edge. Given that

some real-world graphs, such as power-law graphs, often exhibit strong com-

munity structures, vertex IDs can be reordered to reflect these community-

aware arrangements.

As shown in Figure 3.4b, the sparse matrix of the reordered graph reveals

that many edges are concentrated along the diagonal, with large communities

appearing as square blocks. On the reordered graph (Figure 3.5a), CR2 defines

2N × 2N square clusters along the diagonal and divides the graph into two

parts: intra-cluster and inter-cluster graphs.

Intra-cluster graph: The intra-cluster graph consists of multiple fixed-size

clusters. Each cluster contains edges located within a 2N × 2N square along the

diagonal of the sparse matrix (Figure 3.4c). For instance, with a cluster size of

24 × 24, the reordered graph (Figure 3.5a) can be clustered as shown in Fig-
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ure 3.5c. In CR2, vertex IDs are represented as a combination of cluster ID and

local vertex ID. The global vertex ID can be derived from these components

using the following equation:

global vertex ID = (cluster ID ≪ N ) | local vertex ID. (3.1)

This allows each cluster to represent its intra-cluster graph using only the lo-

cal vertex ID, effectively reducing memory costs for data structure construc-

tion by half. For example, with a cluster size of 24 × 24 (N = 4), the upper 4

bits of the global vertex ID correspond to the cluster ID, while the lower 4 bits

correspond to the local vertex ID. Specifically, vertex 34 in Figure 3.5a can be

represented as cluster ID 2 and local vertex ID 2, as illustrated in Figure 3.3.

Inter-cluster graph: The inter-cluster graph comprises edges that span

across clusters (dashed area in Figure 3.4c). In Figure 3.5c, these edges lie out-

side the rectangular boxes representing the intra-cluster graph. Unlike the

intra-cluster graph, the vertex IDs in the inter-cluster graph are not a direct

combination of cluster ID and local vertex ID. Since the inter-cluster graph rep-

resents edges that do not fall within clusters, there is no straightforward rule

to derive global vertex ID from local vertex ID. Consequently, the inter-cluster

graph uses global vertex IDs to represent its structure. As a result, CR2 main-

tains one global inter-cluster graph, in contrast to the multiple intra-cluster

graphs.

By separating intra-cluster subgraphs from the original graph, the commu-

nity-aware subgraphs in CR2 leverage highly skewed graphs’ locality while

reducing overall memory usage. Compared to CSR, these subgraphs require

additional memory for the source ID array because each vertex is divided
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0 0 1 0 0 0 1 0
cluster ID (M-N bits) = 2 local ID (N bits) = 2 

global ID (M bits) = 34

Figure 3.3: Vertex ID representation in the intra-cluster graph. Here, the ver-
tex ID size M is larger than or equal to the order of the number of vertices, v.

(a) Random order (b) Community-based
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cluster 1

cluster 0

𝑁

𝑁
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ur

ce

destination

(c) Clustering in CR2

Figure 3.4: Random- and community-based reordered sparse matrices, along
with the clustering concept in CR2, where the cluster size is fixed at N × N.

across multiple subgraphs, with each subgraph containing only a subset of

the vertices, as depicted in Figures 3.5c and 3.5d. However, this additional

memory overhead is offset by the inter-cluster graph, which represents edge

lists using only 4 bits, significantly reducing memory usage.

Furthermore, the vertex-degree regulation introduced in the following ch-

apter eliminates the need for offset arrays in all community-aware degree-

ordered subgraphs. As a result, for most skewed graphs with highly clustered

edges, CR2 not only reduces memory consumption compared to CSR but also

achieves the first and second design goals.
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Figure 3.5: Design process of CR2 using two novel design solutions,
community-aware subgraphs, and degree-aware vertex splitting.
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3.3.3 Degree-Ordered Subgraph (Degree-n)

Addressing workload imbalance is a crucial challenge in GPU programming,

as it significantly influences application execution times. To mitigate the im-

balance caused by the power-law degree distribution found in real-world gra-

phs, prior works [19, 52] have proposed splitting vertices into multiple vir-

tual vertices, each with a limited number of edges. While vertex splitting can

reduce workload imbalance across threads or warps, these approaches of-

ten fail to account for GPU architectural characteristics, such as warp size,

thereby missing opportunities for performance improvements. For instance,

Tigr uses a fixed constant α for vertex splitting but still faces workload imbal-

ance issues for edges below the α threshold.

This work introduces degree-ordered subgraphs with vertex-degree regu-

lation, leveraging GPU architecture properties to achieve improved workload

balance. Given that the warp size (2w) in modern GPUs is 25, this approach reg-

ulates vertex degrees to powers of two (up to 32). Vertices are initially split so

that no vertex has more than 32 edges. Subsequently, their edge counts are di-

vided by 2n, where n ranges from 4 to 0. As a result, all vertices have degrees

that are powers of two (up to 32). Vertex-degree regulation is applied sepa-

rately to both intra-cluster and inter-cluster graphs. Figure 3.5e illustrates the

graph after vertex splitting based on incoming edges from Figure 3.5c. For ex-

ample, vertex 0416 in cluster 1 of Figure 3.5c is split into smaller vertices, each

containing 1 and 2 edges.

The vertex splitting process increases the number of source vertices (e.g.,

vertex 0016 and vertex 0416 in Figure 3.5e) compared to the community-aware
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clustered graph (Figure 3.5c). Consequently, the number of elements in the

offset array also grows since each split vertex has a distinct number of edges

(Figure 3.5f). While the increase in source ID elements does not introduce sig-

nificant memory overhead in intra-cluster graphs due to local ID representa-

tion, the growth of the offset array can pose challenges, as it typically uses a

32-bit data type. For inter-cluster graphs, although vertex and offset increases

occur, their impact is relatively smaller than in intra-cluster graphs, especially

when clusters contain numerous edges.

The number of edges for each vertex in the intra- and inter-cluster graphs

ranges from 20 to 25 (= 2w) due to the vertex splitting technique. This enables

the grouping of graphs based on vertex edge counts. For each cluster in the

intra-cluster and inter-cluster graphs, six subgraphs are constructed, termed

Degree-n subgraphs, where each vertex has exactlyn edges (n = 1, 2, 4, 8, 16, 32).

Managing Degree-n subgraphs separately provides two key advantages:

Elimination of Offset Arrays: Degree-n subgraphs eliminate the need for

offset arrays, reducing the memory overhead introduced by vertex splitting.

Since all vertices within a Degree-n subgraph have n edges, the edge list in-

dex can be directly calculated by multiplying the source ID index by n. This ap-

proach minimizes memory usage and reduces memory bandwidth require-

ments.

Improved Warp Lane Utilization: Degree-n subgraphs maximize warp

lane utilization, addressing workload imbalance. While vertex splitting re-

duces thread or warp imbalance, GPUs still face underutilization of warp

lanes or incur additional computational overhead, such as binary searches.

For instance, in VWC processing, each virtual warp processes the edges of a
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single source vertex. This can lead to warp underutilization when edge counts

do not align with the warp size (Figure 3.2). Previous approaches [53] allow

multiple vertices to share a warp but require binary searches to identify the

source vertex for each thread. Degree-n subgraphs address both issues by

pre-defining vertex degrees as powers of two, ensuring vertices fit precisely

within warp sizes. For example, four vertices with eight edges each fully uti-

lize all 32 warp lanes, achieving 100% lane utilization.

Figure 3.5g presents the final representation of CR2 without offset arrays.

Unlike Figure 3.5f, each cluster and the inter-cluster graph is further subdi-

vided based on vertex edge counts. For instance, cluster 0 in Figure 3.5f now

contains Degree-1, Degree-2, and Degree-4 subgraphs, all managed without

requiring offset arrays (Figure 3.5g).

3.3.4 Expand List for Split Source Access

Certain algorithms, such as BFS or SSSP, update only portions of a graph dur-

ing each iteration. These algorithms achieve better performance by limiting

access to active vertices rather than traversing all vertices in the graph [10].

However, the CR2 representation shown in Figure 3.5g does not inherently

support selective access to active vertices. This limitation arises because ver-

tices are divided into multiple virtual vertices distributed across various Degr-

ee-n subgraphs, and their exact locations are not directly identifiable. Access-

ing active vertices requires additional pointers to their corresponding virtual

vertices.

To facilitate access to virtual vertices, CR2 introduces an expand list, which

maintains pointers mapping real vertices to their virtual counterparts, akin
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0 0 1 0 0 0 1

degree = 21 offset = 1

Virtual source pointer = 1116

is_inter-cluster

Figure 3.6: Virtual Source pointer representation in the expand list. The
pointer uses the first three bits to represent cluster information and the last
four bits to represent the offset.

to the CSR representation (Figure 3.5h). To minimize the memory overhead of

the expand list, this work encodes each pointer using a combination of three

components: a is_inter-cluster flag, a degree value, and an offset value, as de-

tailed in Figure 3.6. The is_inter-cluster flag, represented by a single bit, in-

dicates whether the virtual vertex resides in an inter-cluster subgraph. The

degree value specifies the degree of its corresponding Degree-n subgraph, re-

quiring ⌈log(w + 1)⌉ bits, where w represents the warp size. The offset value

denotes the location of the virtual vertex within its Degree-n subgraph, using

log |Vv| bits. In the worst case, the offset size is 2v −w bits, as each vertex con-

nects to all other vertices with 2v−w virtual vertices, given a total of 2v vertices.

Additionally, the encoded source pointer does not include the cluster ID

because the cluster ID is inherently embedded in the vertex ID. This encoding

strategy reduces the memory footprint of the expand list while enabling effi-

cient access to virtual vertices in CR2.

3.4 Processing CR2 Graph

This chapter explains the fundamental processing steps of CR2, including how

to construct a CR2 graph storage format and execute GPU kernels utilizing CR2.

It is important to note that various reordering algorithms [49, 50] can be ap-
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plied to rearrange graph data to leverage the community structure inherent

in many graphs. For simplicity, this work assumes the dataset is pre-ordered

and describes the method for generating CR2 based on the reordered graph.

3.4.1 Building CR2

Algorithm 3.1: CR2 builder
Input: E : Edge set of input graph
Output: Gcr2 : CR2 graph

1 Gcr2 ← CR2Graph()
2 if needReordering then
3 Er ← reorderGraph(E)
4 countDegree(Er , Gcr2)
5 allocSubGraph(Gcr2.intraGraph)
6 allocSubGraph(Gcr2.interGraph)
7 insertEdges(Er , Gcr2)

Algorithm 3.1 outlines the procedure for constructing CR2 in both push

and pull directions from an input graph. The process involves four primary

steps. First, if the input graph is not preordered, the builder applies a reorder-

ing algorithm, such as the Rabbit-order algorithm [50], to enhance the graph’s

community structure (line 3). Second, the builder calculates the in-degree and

out-degree of each vertex to gather necessary degree information (line 4).

Third, leveraging the degree information, the builder allocates memory for

the storage formats corresponding to push and pull directions and prepares

intermediate data structures to ensure edges are placed correctly (line 5 to

line 6). The intermediate data, remainEdges and prefixEdgeLoc, track the num-

ber of remaining edges and the current insertion locations for edges, respec-

tively (line 7). Finally, the builder inserts the edges into the preallocated mem-

ory space for the CR2 representation (line 7). In this implementation, the en-
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Algorithm 3.2: countDegree(Er, Gcr2)
Input: Er : Edge set of reordered graph

Gcr2 : CR2 graph
1 foreach e ∈ Er do
2 (src, dest)← e.getEdgeInfo()
3 if (src / N) = (dest / N) then
4 fetch_and_add(Gcr2.intraGraph.inDegree[dest], 1)
5 fetch_and_add(Gcr2.intraGraph.outDegree[src], 1)
6 else
7 fetch_and_add(Gcr2.interGraph.inDegree[dest], 1)
8 fetch_and_add(Gcr2.interGraph.outDegree[src], 1)
9 end

tire process is executed on the CPU.

To construct CR2, the builder examines the in-degree and out-degree of

each vertex within the intra-cluster and inter-cluster graphs. Algorithm 3.2

presents the degree counting algorithm used for CR2. For each edge, the builder

determines whether the edge belongs to the intra-cluster graph or the inter-

cluster graph based on the cluster size constant N (line 3). Next, the builder

increments the corresponding degree arrays by 1 (line 4 to line 8) in the iden-

tified graph. To enhance efficiency, the degree counting process is executed in

parallel (line 1).

The core task of the builder involves storing edges into the memory space

based on the degree information obtained earlier. Algorithm 3.3 outlines the

edge insertion process into the allocated memory. The builder determines its

insertion location for each edge by iterating through the degrees from the

maximum degree constant w to 0. As shown in line 6 to line 14, the insertion

process for edges within the intra-cluster graph and push direction is carried

out as follows: First, the builder verifies whether the deg-subgraph has suf-

ficient remaining space to store the edge (line 8). Second, it retrieves the ap-
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Algorithm 3.3: insertEdges(Er, Gcr2)
Input: Er : Edge set of reordered input graph

Gcr2 : CR2 graph
1 for e ∈ Er do
2 (src, dest)← e.getEdgeInfo()
3 if (src / N) = (dest / N) then
4 // Insert edge to intra-graph for push direction
5 // remainEdges and prefixEdgeLoc contains numbers of remaining degree and

current locations to insert edge, respectively
6 for deg← [w,0] do
7 v_loc← src * (w + 1) + deg
8 if Gcr2.remainEdges.intra.out[v_loc] > 0 then
9 e_loc← Gcr2.prefixEdgeLoc.intra.out[v_loc]

10 Gcr2.intraGraph.edgeList.intra.out[e_loc]← dest
11 ...
12 Gcr2.prefixEdgeLoc.intra.out[v_loc] ++
13 Gcr2.remainEdges.intra.out[v_loc] −−
14 end
15 // Insert edge to intra-graph for pull direction
16 ...
17 else
18 // Insert edge to inter-graph ...
19 end

propriate location for the edge (line 9) and adds the destination vertex of the

edge to the edge list for the intra-cluster graph in the push direction (line 10).

After completing the insertion, the builder increments the values of the inter-

mediate data for the edge by 1(line 12 to line 13). This process completes the

construction of the CR2 storage format.

3.4.2 Launching Kernels with CR2

To process graph applications, each kernel is responsible for handling the

Degree-n subgraphs from both intra- and inter-cluster graphs. Since CR2 groups

all Degree-n intra-cluster subgraphs with the same n and processes them in

a single kernel launch, the number of kernel launches is restricted to twice
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Algorithm 3.4: Example of CR2 processing
Input: deg : Degree of this kernel

baseIDList: List of base vertex id
edgeList: List of remaining vertex id
isPull: Indicator for direction
workload: Number of virtual nodes

1 eid← threadIdx.x + blockDim.x * blockIdx.x
2 vid = eid >> deg
3 if vid >= workload then
4 return;
5 src = baseIDList[vid]
6 if isDense then
7 globalID← src & 0xffff0000
8 dest← globalID | (DENSE_TYPE *)edgeList[eid]
9 else

10 dest← (SPARSE_TYPE*)edgeList[eid]
11 if isPull then
12 swap(src, dest)
13 ...
14 // perform algorithm with source and destination ID.

the number of degrees. For example, to process the entire graph represented

by CR2 shown in Figure 3.5g, five kernels—corresponding to degree-1, 2, and

4 intra-cluster subgraphs, as well as degree-1 and degree-2 inter-cluster sub-

graphs—are launched.

Algorithm 3.4 provides an example implementation of a CR2 processing

kernel that binds edges to threads. The kernel accepts the storage format ar-

ray, degree (deg), direction, and the number of vertices as its input arguments.

The storage format array includes edgeList and baseIDList, which represent

source ID lists or destination ID lists, depending on whether the direction is

push or pull.

First, the kernel uses the thread ID as the edge ID (line 1), and calculates

the corresponding vertex by shifting the edge ID by deg (line 2), and performs

a validation check (line 3). Second, the kernel retrieves the source ID of the
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Table 3.3: The worst time complexity of basic graph operations. deg(v) means
the number of edges of the vertex v.

Operation CSR CR2

add & delete O(|V |+ |E|) O(|V |+ |Vv|)
find neighbors O(deg(v)) O(deg(v))

edge from the vid-th element of the baseIDList. Third, the kernel determines

the destination ID.

If the kernel is launched for intra-cluster graphs, it calculates the global ID

(line 7) and computes the destination ID using the global ID and Equation 3.1

(line 8). For inter-cluster graphs, the destination ID is directly retrieved from

the eid-th element of the edgeList. In the case of a pull direction, the kernel

swaps the source and destination IDs. Finally, the kernel executes the graph

algorithm, such as PageRank or BFS, using the source and destination IDs.

3.4.3 Adding and Deleting an Edge

Since CR2 organizes intra-cluster and inter-cluster graphs separately, the ini-

tial step for adding or deleting an edge, e = (u, v), is to determine the clus-

ter to which the target edge belongs. This can be checked using the condi-

tion ⌊u/cluster size⌋ == ⌊v/cluster size⌋. If the condition evaluates to true, the

edge is part of the cluster identified by ⌊u/cluster size⌋. Otherwise, the edge re-

sides in the inter-cluster graph. In CR2, the edges of a vertex v are distributed

across Degree-n subgraphs based on the vertex’s in-degree. For example, as

shown in Figure 3.7a, the edges of vertex 4 (in cluster-0) from Figure 3.7c are

distributed across Degree-1 and Degree-2 subgraphs before the addition of a

new edge. When the new edge is added, vertex 4’s in-degree increases to 4
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Figure 3.7: Addition and deletion of the edge represented by CR2 in Figure 3.5

(Figure 3.7a). Consequently, the edges originally in the Degree-1 and Degree-2

subgraphs must be migrated to the Degree-4 subgraph (Figure 3.7b). During

this migration, CR2 also updates the expand list to reflect the changes. Delet-

ing an edge operates in the reverse manner (Figures 7a and 7c).

The worst-case time complexity for adding and deleting an edge is sum-

marized in Table 3.3. When adding or deleting an intra-cluster edge, the time

complexity for moving edges between Degree-n subgraphs is constant be-

cause the maximum number of vertices within a cluster is fixed. However, for
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inter-cluster edges, the time complexity for relocating edges among Degree-n

subgraphs becomes proportional to the number of vertices, |V |. Additionally,

updating the expand list following the CSR format incurs a time complexity

of |V |+ |Vv|. Therefore, the worst-case time complexity for adding or deleting

an edge is O(|V |+ |Vv|).

3.4.4 Finding Neighbors of a Vertex

To retrieve all neighbors of a vertex v, CR2 utilizes the virtual source point-

ers stored in the expand list. Each virtual source pointer contains informa-

tion about the associated Degree-n subgraph and the specific location of the

vertex within that subgraph. Using these virtual source pointers, CR2 can effi-

ciently access all neighbors from the corresponding Degree-n subgraphs. Af-

ter obtaining the virtual source pointers, CR2 performs neighbor retrieval in

constant time. Therefore, the worst-case time complexity is determined by the

process of searching for virtual source pointers in the expand list. Since the

expand list is represented in CSR format, this search has a time complexity

proportional to the number of virtual vertices of v, which is less than deg(v).

3.5 Evaluation

We evaluate the performance of CR2 using four algorithms across seven datas-

ets, compared to two state-of-the-art frameworks: VWC-CSR [43] and Tigr [19].

VWC-CSR employs CSR as its storage format, optimized as shown in Figure 3.2,

while Tigr utilizes the latest storage format techniques. Both frameworks were

sourced from their public repositories, and performance was measured for

both push and pull directions, selecting the better result in each case.
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Table 3.4: Dataset Specification [27]. edgesd indicates the percentage of edges
that reside within the intra-cluster graph, where the cluster size is set to 216

× 216, compared to the total number of edges in the graph.

Dataset # nodes # edges Max deg % edgesd sym

uk-2005(UK) 130K 23M 850 99 % sym
indochina-2004(IC) 7,415K 302M 56,425 93 % sym
hollywood-2009(HW) 1,140K 113M 11,467 70 % sym
soc-twitter-2010(TW) 21,298K 530M 698,112 38% sym
soc-LiveJournal(LJ) 4,848K 86M 20,333 19% sym
soc-orkut(OK) 2,997K 213M 27,466 15% sym
it-2004(IT) 41M 1,151M 1,326,745 92% asym

The evaluation was conducted on an NVIDIA GeForce RTX 3090 GPU, equip-

ped with 10,496 CUDA cores, 82 streaming multiprocessors, 6MB L2 cache, and

24GB memory, paired with an Intel(R) Core(TM) i7-8700 CPU. All source codes

were compiled using the CUDA toolkit 12.0 with the -O3 optimization flag.

Table 3.4 provides details on the seven datasets used in this study, sourced

from the network repository [27]: uk-2005 (UK), Indochina-2004 (IC), hollywood-

2009 (HW), soc-twitter-2010 (TW), soc-LiveJournal (LJ), soc-orkut (OK), and

it-2004 (IT). The implemented graph algorithms include Breadth-First-Search

(BFS) [35], Single-Source-Shortest-Path (SSSP) [30], Connected-Components (CC)

[34], and PageRank (PR) [33].

The expand list in CR2 facilitates optimizations for BFS and SSSP by en-

abling targeted access to active vertices starting from the root node. Execution

times were measured excluding graph building and memory transfer opera-

tions. BFS, SSSP, and CC were executed until convergence, while PR was eval-

uated on a per-iteration basis.
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Table 3.5: Execution times (in milliseconds) of four algorithms across eight
input graphs are compared for three frameworks: VWC-CSR, Tigr, and CR2,
utilizing a Nvidia GeForce RTX 3090.

PR (time per round) BFS

Graph VWC Tigr CR2 VWC Tigr CR2

UK 0.33 0.27 0.26 1.89 0.48 0.29
IC 14.99 10.21 5.44 269.71 13.46 9.38
TW 57.27 39.26 28.85 461.59 35.47 19.12
HW 2.12 2.50 2.19 13.06 2.82 1.26
OK 15.82 16.06 10.86 29.63 8.00 4.82
LJ 6.91 5.80 4.84 25.02 5.17 4.77
IT 61.17 60.74 25.96 2545.86 116.78 52.54

CC SSSP

Graph VWC Tigr CR2 VWC Tigr CR2

UK 1.90 0.59 0.38 1.97 0.60 0.72
IC 259.54 17.5 7.94 804.98 74.5 115.41
TW 440.13 106.14 72.88 504.02 42.81 53.99
HW 12.13 3.08 2.81 42.33 10.92 12.42
OK 24.7 18.75 9.89 169.67 74.83 38.28
LJ 25.08 10.35 7.57 138.52 39.08 27.54
IT 2527.31 486.19 35.28 2509.75 seg fault 48.96

3.5.1 Execution Time

Table 3.5 presents the processing times for four graph algorithms evaluated

on VWC-CSR, Tigr, and CR2. CR2 achieves geomean speedups of 6.47× and

1.55× compared to VWC-CSR and Tigr, respectively. Specifically, CR2 delivers

1.62×, 15.63×, 8.99×, and 7.70× geomean speedups over VWC-CSR, and 1.42×,

1.74×, 2.11×, and 1.01× geomean speedups over Tigr for the PR, BFS, CC, and

SSSP algorithms, respectively.

For the PR algorithm, CR2 demonstrates 1.65× and 1.43× better perfor-

mance than VWC-CSR and Tigr. Since PR requires accessing all vertices and

edges at every iteration, the improvement highlights CR2 ’s superior locality
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and workload balancing capabilities. For instance, with the IC dataset, which

has a high percentage of intra-cluster edges, CR2 achieves a 2.76× speedup

over VWC-CSR. This result suggests that CR2 performs particularly well on

highly clustered datasets. Additionally, CR2 outperforms VWC-CSR by 1.98×

for the TW dataset, which is well-clustered except for its super nodes (Max deg

in Table 3.4). However, datasets like UK and HW, despite being well-clustered,

exhibit smaller performance gains due to their relatively low vertex counts,

which limit the benefits of locality. Even for datasets like OK and LJ, with fewer

intra-cluster edges, CR2 still shows improvements due to the degree-ordered

subgraph technique, which effectively mitigates warp imbalance.

For BFS, CR2 achieves 13.29× and 1.69× better performance than VWC-CSR

and Tigr, respectively. This performance boost stems from the Hybrid-BFS al-

gorithm [35], which maintains frontiers of vertices for each iteration. Unlike

Tigr, which lacks a mapping from real to virtual vertices, CR2 utilizes its ex-

pansion list to efficiently access active vertices and their neighbors, avoiding

unnecessary processing of inactive vertices and edges. The detailed mecha-

nism is discussed in Chapter 3.5.3.

For the CC algorithm, CR2 outperforms VWC-CSR and Tigr by 8.22× and

2.12×, respectively. Similar to PR, CC requires accessing all vertices and edges

during each iteration. Consequently, CR2 benefits from its efficient handling of

locality and workload balance, particularly on large, well-clustered datasets

like IC and IT, where it effectively leverages shortcuts to accelerate iteration

completion.

For SSSP, CR2 achieves 6.83× and 1.01× speedups compared to VWC-CSR

and Tigr, respectively. However, unlike the other algorithms, CR2 shows com-
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Figure 3.8: Memory usage of VWC-CSR, Tigr and CR2. Each graph is normalized
to the memory usage of VWC-CSR.

parable performance to Tigr. This is because the SSSP algorithm maintains a

relatively large frontier for many iterations, as vertex updates frequently im-

pact neighboring vertices. This persistent large frontier results in significant

overhead when accessing the expand list, which mitigates CR2’s advantages

for SSSP.

3.5.2 Memory Efficiency

This work evaluates the memory usage of VWC-CSR, Tigr, and CR2 as depicted

in Figure 3.8. The measured memory size accounts for the storage format of

each framework, excluding the algorithm-specific memory usage. For Tigr, the

configuration (K=8) from its original paper [19] and public repository is used.

For CR2, the measurement includes the memory required for the expand list.

On average, CR2 uses 12.3% and 32.1% less memory compared to VWC-

CSR and Tigr, respectively. This efficiency arises from CR2 ’s compression of

vertex IDs for intra-cluster edges. Datasets such as UK, IC, HW, and IT, which

have over 70% intra-cluster edges, demonstrate significant memory reduc-
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tions with CR2. For other datasets, CR2 incurs slightly higher memory usage

than VWC-CSR due to the overhead of the expand list.

Similar to Tigr, CR2 splits vertices into multiple virtual vertices and reg-

ulates the number of edges per virtual vertex. However, CR2 employs finer-

grained regulation than Tigr and introduces additional data structures like

the expand list. Despite these additions, CR2 consumes considerably less mem-

ory than Tigr. This is attributed to its elimination of the offset array through

the use of degree-ordered subgraphs and its compression of vertex IDs with

community-aware subgraphs.

3.5.3 Performance using Expand List

Some algorithms update only portions of a graph by reflecting changes in ver-

tex values. By maintaining an active vertex set, such algorithms can restrict

processing to vertices in the frontier during subsequent iterations, avoiding

the need to traverse the entire graph. This selective processing significantly

reduces execution time. However, the use of virtual vertices in Tigr and CR2
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Figure 3.10: Ratio of memory usage of the expand list.

complicates frontier management, as a single vertex is split into multiple vir-

tual vertices distributed across various locations without pointers linking them.

To address this limitation, CR2 introduces the expand list, which efficiently

maps each vertex to its corresponding virtual vertices. This mapping allows

seamless support for frontiers, overcoming the challenges posed by virtual

vertex distributions.

The benefits of the expand list are evident in Figure 3.9, which demon-

strates its impact on the Hybrid-BFS algorithm [35]. Incorporating the expand

list results in a 1.72× geomean speedup compared to CR2 without the expand

list. While the expand list introduces additional memory overhead, as shown

in Figure 3.10, it accounts for only 11.8% of CR2’s total memory usage on av-

erage. This results in a memory footprint comparable to CSR but still lower

than that of Tigr.

Consequently, if the system provides sufficient memory resources, the ex-

pand list enables CR2 to trade a modest increase in memory usage for substan-

tial performance gains. This trade-off underscores the expand list’s utility in

accelerating execution for graph algorithms.
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Table 3.6: Storage format build time (Miliseconds). The cluster size of CR2 is
216 × 216.

Dataset CSR Tigr CR2

UK 40.82 192.22 118.515
IC 582.17 2541.17 2009.93
TW 1620.52 4617.53 4870.29
HW 234.45 903.06 705.615
OK 577.13 1727.45 1661.05
LJ 317.5 772.2 1002.52
IT 10803 10136.9 28726.2

3.5.4 Storage Format Build Time

Figure 3.11 presents the time required to construct storage formats from raw

graph datasets. On average, CR2 takes approximately 3.0× and 1.05× more

time than VWC-CSR and Tigr, respectively. The faster build time for VWC-CSR

is attributable to its use of CSR, which requires less computational effort com-

pared to the more complex representation techniques employed by Tigr and

CR2. CR2 takes more build time compared to Tigr is particularly evident with

datasets like TW, LJ, and IT. These datasets contain a higher proportion of non-

diagonal edges, resulting in more insertions during the construction process

and thus increasing the overall build time. It is important to note that the eval-

uations utilize graph datasets without any additional reordering applied.

3.5.5 Performance Comparison of Push and Pull

The performance of graph algorithms like PR can vary significantly depend-

ing on the processing direction, so this work supports both push and pull di-

rections. For PR, the execution time ratios of the push direction to the pull

direction for symmetric graphs are observed as 32.2%, 14.6%, 22.4%, 12.4%,
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151.5%, and 137% for UK, IC, HW, TW, LJ, and OK, respectively.

The differences in performance arise from the inherent characteristics of

the graphs. In the push direction, CR2 can efficiently reuse source data to up-

date outgoing edges, leveraging temporal locality as vertex value accesses are

coalesced within the same subgraph. Conversely, in the pull direction, each

GPU thread updates one destination vertex, with all threads in the subgraph

targeting similar memory locations, thereby exploiting spatial locality.

Graphs with higher edgesd ratios benefit more from the push direction due

to its efficient temporal locality utilization. In the evaluation, datasets such as

UK, IC, and HW, which exhibit high edgesd ratios, perform better with the

push direction. Conversely, datasets like LJ and OK, characterized by lower

edgesd ratios, achieve better performance using the pull direction, where spa-

tial locality is more effectively exploited.
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3.6 Summary

In Chapter 3, we propose a new graph representation, CR2, which combines

vertex ID compression using community-aware subgraphs with vertex degree

regularization through degree-ordered subgraphs. This approach enables high-

performance, memory-efficient graph processing on GPUs. The evaluation

demonstrates that CR2 achieves a 1.53× performance speedup while reduc-

ing memory usage by 32.1% on average (geometric mean) compared to state-

of-the-art techniques.
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Chapter 4

SPARSEWEAVER: MICROARCHITECTURE FOR

ACCELERATING SCHEDULE

This research proposes a new hardware-software collaborative graph pro-

cessing framework, SparseWeaver, that converts sparse operations in graph

processing into dense operations using a new microarchitecture and balances

the workloads across GPU threads.

4.1 Necessity of Hardware Acceleration for Schedule

Schedule determines the distribution of edges across threads, making it one

of the important optimizations for workload balancing. While storage format

can provide a static strategy for achieving a balanced memory access pattern

in the graph, it is not always effective. As discussed in Chapter 3.5.1, static ap-

proaches are ineffective for algorithms like BFS and SSSP, where active ver-

tices change dynamically across iterations. On the other hand, schedule can

be viewed as a method for deciding how to map computations at runtime.

This dynamic nature necessitates various schedule techniques designed to op-

timize workload balancing.

However, software-only solutions come with inherent limitations. First,

they introduce additional overhead for remapping edges across warps or cores,

requiring extra memory operations to store and share indirect pointers and
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additional computations for mapping. Second, the effectiveness of software-

based schemes can vary depending on the sparsity and skewness of the graph

structure, making it challenging to find an optimal solution for diverse real-

world graphs [7, 8, 18].

Some works [54, 55, 56] propose hardware-based solutions, such as load-

balancing units for generating edge lists. However, these approaches also face

challenges. The additional memory access required to gather edge informa-

tion introduces overhead. Furthermore, since specialized hardware handles

memory reads and writes for edge data independently, these approaches of-

ten fail to fully utilize GPU bandwidth. This limitation is exacerbated for mem-

ory-intensive graph workloads, where the ability to hide memory stalls using

warp-level parallelism is critical.

To balance workloads efficiently while minimizing overhead, we propose

leveraging a lightweight, low-overhead hardware accelerator. The fundamen-

tal reason for the workload imbalance problem lies in the sparsity of graph

workloads, driven by their irregular structure, as illustrated in Figure 4.1.

GPUs, traditionally optimized for dense operations, struggle with these irreg-

ularities. By introducing compact hardware to transform sparse operations

into dense, SIMD-compatible operations, we can address workload imbalance

with minimal overhead. Moreover, integrating this hardware into the GPU ex-

ecution pipeline allows for fine-grained, pipelined execution while preserv-

ing the advantages of GPU architecture, such as warp-level parallelism and

high memory throughput.

86



Dense Operation
SIMD Friendly 

Workload Distribution 

SparseWeaver

T0 T1 T2 T3
e0 e2 e3 e9
e1 e4 e10

e5 e11
e6
e7
e8

T0 T1 T2 T3
e0 e1 e2 e3
e4 e5 e6 e7
e8 e9 e10 e11

Sparse Workload 
Information

Graph topology 

T0 T1 T2 T3
V0: 2 V1: 1 V2: 6 V3: 3

Sparse Operation
Imbalanced 

Workload Distribution 

Naïve scheduling 

parallel_for(v : graph){
  for(e : neighbor_edges(v)){
    computeFn(v, n)}}

Weaver
Mapping 

Generation
Hardware

Sparse Workload 
Information

Graph topology 
T0 T1 T2 T3

V0: 2 V1: 1 V2: 6 V3: 3

Figure 4.1: Workload imbalance among threads in warps during graph pro-
cessing caused by the irregular graph structure. SparseWeaver can address
workload imbalance problem by SIMD-friendly workload distribution by
hardware logic called Weaver

4.2 Revisit Graph Processing on GPU in terms of Schedule

Accessing neighboring edges involves two steps during the gather operation,

resulting in sparse operations. The first step retrieves the graph topology of a

vertex to identify its neighboring edges. The second step accesses the informa-

tion of each neighboring edge to perform gather and sum operations. While

the first step is inherently dense and easily parallelized across threads, the

second step requires threads to process sparse neighboring edges, leading to

workload imbalance and poor warp utilization among threads within warps,
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as illustrated in Figure 4.1.

This issue is exacerbated when performing gather and sum operations

on real-world graphs due to several inherent characteristics of these graphs.

First, real-world graphs are often sparse and highly skewed in structure [21,

22]. Second, the neighboring edges of a vertex are frequently unpredictable [44,

57, 58], resulting in irregular memory access patterns for both edge data and

vertex properties. Third, real-world graphs can consist of millions to billions

of edges, and some vertices may have an exceptionally high degree, with thou-

sands of neighbors [59, 60, 61].

Given these challenges, the workload imbalance problem becomes par-

ticularly severe for real-world graphs. Therefore, optimizing gather and sum

operations by effectively balancing the workload is essential to achieve high

performance.

4.3 Deep Dive into Related Schedules

Existing schedules [7, 8, 13, 62] aim to achieve workload-balanced mappings

but require computationally expensive operations for synchronization and

data sharing among threads. Table 4.1 highlights the additional memory us-

age and computational overhead involved in these methods.

These schedules address workload imbalance caused by skewed distribu-

tions in various ways, but their approaches are not well-suited to the Sin-

gle Instruction Multiple Threads (SIMT) model. This is because they rely on

sharing profiled data among threads and require iterative accesses to that

shared data to assign work IDs to threads. For instance, the WM mapping pro-
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Figure 4.2: Expected warp iteration and performance of software-based
schedules. (a) shows expected warp iteration using the PageRank (PR) algo-
rithm with three different schedules (VM, EM, WM) on the bio-human graph
(BH) and graph-500-scale19 (G500). (b) shows speedup over VM

cess, illustrated in Figure 4.2a, demonstrates this challenge in detail. The pro-

cess involves accessing the offset list to profile vertex degrees, creating a de-

gree sum array, broadcasting the total degree within the warp, and updating

shared memory. Subsequently, each thread calculates its next work ID by per-

forming a binary search on the shared degree array, which must be repeated

for every iteration. This process introduces an O(n log(n)) time complexity for

shared memory scans. Similarly, the CM scheduling approach aggregates to-

tal degrees at the block level, with searches also occurring at this level. While

this improves load balancing compared to WM, it introduces additional over-

head due to the increased computational complexity. In general, these sched-

ules offset the runtime costs of mapping generation by the performance ben-

efits gained from workload balancing. However, the inherent inefficiencies

in their mapping processes limit their suitability for graph workloads that re-

quire both high performance and low overhead.

To mitigate the workload imbalance issue, it is crucial to transform sparse
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Figure 4.3: Performance comparison with existing software schedule in two
Nvidia GPUs (Ampere (A30) and Ada (RTX4090)) using HW and UK dataset
with PageRank and GRAssembler. Each graph shows speedups over VM.

operations into dense ones during the second step of edge access, which can

be achieved by reorganizing the edge list across threads in a dense manner.

Accordingly, software-based techniques [7, 8, 13, 14, 17, 19, 20, 25] propose

schedules that redistribute active edges across threads within a warp or core

to optimize edge access performance. Table 4.1 provides detailed compar-

isons of these schedules. Although simpler mappings, such as Vertex mapping

(Naive schedule, VM, assigning each vertex and its neighbors to threads) and

Edge mapping (EM, allocating each edge to a thread), are straightforward,

they often face challenges like workload imbalance and increased memory

accesses for edge data. More advanced schedules, including WM [7], CM [7],

TWC [13], TWCE [7], and STRICT [14], aim to distribute workloads more evenly

by sharing graph topology across blocks, warps, or threads. These methods,

however, require additional computation, synchronization, and shared or gl-

obal memory operations to offset workload imbalances, often achieving higher

performance by balancing these trade-offs. Further details are discussed in
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Chapter 4.4.1.

Despite these advances, achieving a balance between workload distribu-

tion and minimizing overhead remains a significant challenge, as the over-

head is not always effectively concealed. Figure 4.2 illustrates the expected

warp iterations and performance of the edge-gathering phase when running

the PageRank algorithm on the BH and G500 graph datasets [31]. As depicted

in Figure 4.2a, workload imbalance results in VM requiring 4x and 11x more

warp iterations compared to WM and EM for the BH and G500 datasets, re-

spectively. While WM and EM achieve similar expected warp iterations by

addressing workload imbalance, their performance differs due to varying

overheads. Specifically, EM incurs double the memory reads for edge data,

whereas WM relies on additional computation and shared memory usage. As

shown in Figure 4.2b, WM and EM deliver the best performance for the BH

and G500 datasets. However, because the G500 graph has relatively more ver-
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tices and fewer edges than the BH graph, it suffers from greater overhead due

to the increased computational demand per edge.

Workload imbalance is a prevalent issue in Nvidia GPUs as well. Figure 4.3

illustrates that complex software schedules, such as CM, WM, TWC, and TWCE,

frequently outperform VM on Nvidia GPUs, achieving up to a 2.80x speedup

by adopting alternative schedules. However, these schedules also come with

their own overheads on Nvidia GPUs, as highlighted in Figure 4.4 1). PageR-

ank, for instance, primarily involves one addition and a read/write operation

for edges and vertices. Despite this simplicity, some schedules introduce addi-

tional stalls, including shared memory stalls (WM, CM, and TWC1), L1 queue

waiting stalls (VM or TWC1), or increased warp/instruction latencies.

These findings emphasize the difficulty in identifying the optimal sched-

ule for specific datasets and applications, as schedules often incur varying

levels of overhead. While prior works [7, 8, 18] have proposed auto-tuners

to optimize graph processing on GPUs, such approaches are inherently time-

intensive and introduce abstraction-related costs.

This raises a crucial question: Is software optimization alone a fundamental

solution to this challenge? The core difficulty in processing graph workloads

on GPUs lies in effectively mapping irregular, data-dependent graph tasks

onto the GPU’s one-dimensional parallel execution units. Existing software-

based solutions address this by distributing such irregular tasks across GPU

warps at runtime (schedule) or compile-time (storage format) to achieve work-

1)The original stall metrics in Nvidia Nsight Compute are named as follows: Memory (long
scoreboard), Shared (short scoreboard), Memory input/output (MIO Throttle), Execution De-
pendency (Wait), Wait for L1 queue (LG Throttle), and Warp/Instruction (average warp latency
per instruction issued).
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load balance. However, these approaches often necessitate additional compu-

tations and synchronizations, as each thread must independently generate

and process the required mapping information.

Tools for exploring efficient schedules or storage formats, such as those

based on DSE (Design Space Exploration) [18], can aid in selecting the most

suitable schedule. Yet, the workload imbalance persists because GPU hard-

ware lacks native support for data-dependent workload mapping within its

one-dimensional structure.

A fundamental solution to this problem requires converting sparse oper-

ations into dense ones at the hardware level. Unlike software schemes, hard-

ware can achieve this mapping with lower overhead by avoiding redundant

computations and synchronized updates needed for thread-specific calcula-

tions. Furthermore, this conversion can be accelerated using a dedicated FSM

to handle the remapping process. However, designing such hardware presents

significant challenges. First, fully offloading the neighboring edge access pro-

cess might overlook opportunities to leverage the GPU’s fine-grained pipeline

and microarchitecture. Second, the conversion hardware could become a bot-

tleneck when handling memory-intensive graph workloads. Third, the offload-

ing process could increase memory usage and access demands.

In this research, we analyze the limitations of existing software-based sche-

mes and pinpoint the critical steps required to convert sparse operations into

dense ones. We then propose a novel lightweight hardware extension seam-

lessly integrated into the GPU execution pipeline to capitalize on GPU archi-

tecture’s advantages while effectively addressing workload imbalance.
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4.4 Hardware/Software Co-Design

4.4.1 Software-based Schedule Abstraction

Existing software-based schedules [7, 8, 13, 14] share common patterns in

their approach to mapping generation. These schemes typically gather graph

topology and generate edge identifiers across warps, blocks, or entire ker-

nels. As illustrated in Figure 4.5, software-based schedules can be broadly cat-

egorized into two stages: (1) the registration stage and (2) the distribution

stage.

In the registration stage, threads collect essential data, such as sparse work-

load information, to facilitate the distribution stage. Each thread processes

this data by filtering the base vertex ID (source or destination vertex ID), ac-

cessing the base vertex’s graph topology, and calculating any required addi-

tional information. During the distribution stage, threads execute tasks based

on the sparse workload data. Specifically, each thread generates an edge ID
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for the current lockstep using shared data and, upon completion, updates the

shared data for subsequent iterations. This involves accessing, gathering, and

summing edge information through indirect pointers.

Details of these schedules are summarized in Table 4.1. Depending on the

target schedule granularity, overheads such as memory usage and compu-

tations vary between the registration and distribution stages. For instance,

Warp-sharing mapping (WM) focuses on balancing workloads within warps.

In the registration stage, each thread loads the graph topology to determine

the degree of neighboring edges and the edge indicator of the first neighbor-

ing edge. Threads then compute a prefix sum array of degrees and update it

in shared memory. In the distribution stage, threads calculate their edge in-

dicators by performing a binary search on the degree prefix sum, incurring a

time complexity of O(n log(n)) for shared memory scans.

Generating finer-grained mappings often enhances workload balance but

also introduces additional overhead. Schemes targeting kernel-level balance

[14] suffer from increased global memory access and kernel launch over-

heads, while warp- and block-level balancing schemes [7, 8, 13] aim for im-

proved performance. Block-level sharing, however, incurs synchronization

and searching overhead. Unlike these software approaches, incorporating li-

ghtweight hardware at the core level can eliminate such overhead, avoiding

the costs associated with block-level sharing. Since GPUs execute one warp

at a time, hardware can dynamically compute and return edge indicators for

the executing warp, enabling efficient block-level workload balancing.

As depicted in Figure 4.5, the essence of existing schedules lies in leverag-

ing sparse workload information to distribute edge IDs densely across threads
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within warps. By offloading minimal but critical components of scheduling

to lightweight hardware, it is possible to reduce overhead and accelerate the

process. Well-designed hardware can minimize the need for additional sched-

ule buffers and integrate the scheduling process seamlessly into the GPU pipe-

line. Consequently, this research proposes to offload the following tasks, high-

lighted as orange boxes in Figure 4.5: (1) preparing shared data across threads,

(2) computing the next edge indicator using shared data, and (3) updating

shared data.

4.4.2 Weaver Logic Design

SparseWeaver is designed to generate edge indicators while maintaining sha-

red data through two key components: the Sparse Workload Information Ta-

ble (ST) and the Dense Work ID Table (DT). The ST stores shared registration

data, including vertex IDs (VIDs), degrees of neighboring vertices, and the

starting positions of neighbor edges in the edge array. During the registra-

tion stage, SparseWeaver collects this information and populates the ST. Con-

versely, the DT holds Work IDs, such as base vertex IDs and generated edge

IDs (EIDs), corresponding to positions in the neighbor edge array. In the distri-

bution stage, SparseWeaver utilizes the DT to return Work IDs for operations

such as edge information access, gathering, and summation.

At the core of SparseWeaver, Weaver handles the generation of Work IDs

for the warp by scanning and decoding the registered ST entries. To facilitate

this, Weaver loads and manages active ST entries in a buffer called Current

Entry Data (CED). It then decodes the CED to produce intermediate Work IDs,

storing these results in the Output Data (OD) buffer. The workflow and finite
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Figure 4.6: SparseWeaver hardware logic called Weaver. The FSM and work-
flow illustrate how the Weaver works, using CED and OD.
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state machine (FSM) of Weaver are depicted in Figure 4.6. The FSM supports

two operational modes: filling the OD buffer from multiple low-degree entries

(S3 → S4 → S2) and filling multiple OD buffers from a single high-degree entry

(S5 → S6 → S2).

When processing begins, Weaver initializes by loading the first entry in

the CED buffer (S1). It then attempts to populate the OD buffer with Work IDs

derived from the CED (S2). If the degree of the current CED entry is insuffi-

cient to fill the OD buffer (C0 == False), Weaver fetches the next ST entry (S3,

S4) and continues filling the OD buffer (S2). Once the OD buffer is fully pop-

ulated, the FSM updates the DT (S5) and awaits the next decode request (S6).

If all ST entries have been processed, the FSM transitions to its end states (S7,

S8). When no valid Work IDs remain, SparseWeaver outputs return empty

Work IDs (e.g., -1). Upon receiving a new registration request in the registra-

tion stage, the FSM reinitializes to its starting state.

An example of SparseWeaver’s operation, assuming a warp contains four

threads, is provided in Figure 4.6. Initially, Weaver reads the first ST entry,

populating the CED buffer with vertex ID 0, start location 2, and degree 1 dur-

ing initialization (S0 → S1). In the decoding stage (S2), Weaver uses this CED

entry to fill one OD buffer entry with vertex ID 0 and edge ID 2. Since the de-

gree of the current CED entry is insufficient to fill the OD buffer, Weaver re-

trieves the next ST entry, updating the CED buffer (S3, S4). The OD buffer, now

requiring three more entries, is further populated using the new ST entry (2,

10, 2), filling two OD entries with (2, 10) and (2, 11). Finally, Weaver processes

an additional ST entry (4, 30, 5) to complete the OD buffer with Work ID (4,

30) before transitioning to state S5 in the FSM.
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4.4.3 SparseWeaver Design

To seamlessly integrate Weaver into the GPU pipeline, we design the execu-

tion workflow of SparseWeaver with Weaver. This chapter discusses the de-

sign decisions to incorporate Weaver into the GPU execution flow.

SparseWeaver Input To achieve the goal of converting sparse operations

into dense operations, Weaver must have access to shared data such as vertex

IDs, locations, and degrees. Because the storage format inherently includes in-

formation about a vertex’s incoming and outgoing edges, SparseWeaver gath-

ers this data during the registration step for the specified workload. Whether

examining incoming edges (pull direction) or outgoing edges (push direction),

shared data — such as the base vertex ID, the start location of the neighbor

edge list, and the degree — can be collected [18].

SparseWeaver registers this shared data into the ST during the registration

stage for use in the distribution stage. Since GPU cores handle graph topology

access and the data is stored in registers, SparseWeaver requires an ISA ex-

tension to define how to extract and gather data from the destination regis-

ters of specific code sequences, ensuring efficient integration with the GPU

execution pipeline.

✝Design Decision: Gather workload information from the GPU core:

Base vertex ID, Location, and Degree.

SparseWeaver Output SparseWeaver generates Work IDs for each thread

within a warp simultaneously in response to every decode request. To trans-

fer these Work IDs to the GPU core, SparseWeaver must return Edge IDs via

a newly introduced ISA. Additionally, SparseWeaver returns the base vertex
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ID, which identifies one vertex in the edge vertex pair, enabling fast edge data

access [18]. This process also requires delivering Work IDs to the core to facil-

itate the execution of subsequent instructions, necessitating another ISA ex-

tension to transmit these IDs from SparseWeaver to the GPU core.

Furthermore, SparseWeaver provides a thread mask to guide thread acti-

vation. By default, SparseWeaver activates all threads within the core to ex-

ecute the distribution stage. However, during mapping, SparseWeaver may

create a scenario where some threads are left without assigned work. For ex-

ample, if the total degree is not evenly divisible by the number of threads

in a warp, some threads may remain idle. In such situations, thread diver-

gence can occur, potentially leading to performance degradation and requir-

ing divergence control mechanisms like split and join [63]. To address this,

SparseWeaver returns a thread mask that serves as a hardware-based mech-

anism to control active threads, effectively replacing the need for additional

divergence control logic.

✝Design Decision: Return workload indicator to GPU core: EID and

VID. Return a clue for thread activation.

Out of Order Registration and Ordered Scan SparseWeaver relies on

the ST not only to store shared data but also to enable entry access in VID or-

der. Organizing edge access by vertex ID during the gathering phase can sig-

nificantly improve performance [7]. However, the out-of-order execution of

warps presents a challenge, as SparseWeaver may encounter data in a disor-

dered sequence. To address this, we implement a two-step approach to con-

struct an ordered ST.

First, the kernel code produced by the SparseWeaver compiler integrates
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investigation logic that utilizes software thread IDs (e.g., CUDA thread ID or

OpenCL global ID), allowing threads to process vertices sequentially. Second,

shared data is organized within the ST using warp IDs and thread IDs as keys,

ensuring that entries are stored and accessed in an ordered manner.

✝Design Decision: Perform ordered decode. For ordered decode, use

software thread ID to investigate the graph topology in the kernel code

and use hardware thread ID and warp ID to index the workload infor-

mation table.

Dynamic Work Distribution SparseWeaver dynamically assigns work IDs,

enabling a distribution mechanism that aligns with out-of-order warp exe-

cution. Specifically, SparseWeaver maps and allocates work based on the se-

quence of incoming requests rather than relying on warp IDs. This dynamic

approach enhances locality by keeping related edge IDs actively processed,

which helps optimize warp execution efficiency.

✝Design Decision: Distribute the workload dynamically to maximize

the benefit from graph locality.

Synchronization between Registration and Distribution SparseWeaver

relies on synchronization for three key reasons. First, synchronization en-

sures that all warps have completed registering the data they are responsible

for processing. This step is crucial because the ST can only be finalized with

workload information from all warps within the core, enabling an ordered

scan. Second, the need for registration is determined by the graph topology,

causing the number of vertices processed by warps in each iteration to vary.

As a result, Weaver cannot predict the number of warp requests, necessitat-
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ing explicit synchronization points within the GPU code to manage these vari-

ations. Third, synchronization is essential to avoid premature exits. For in-

stance, if one warp completes the registration and distribution stages before

another warp has finished registering, it risks underutilizing warp resources,

preventing the efficient distribution of the remaining workload. To address

these challenges, we introduce synchronization between the registration and

distribution steps. This process is also necessary for other complex schedule

algorithms, requiring just one synchronization per iteration. It is worth not-

ing that software-based schemes, except for native ones, also include at least

one synchronization point.

✝Design Decision: Insert synchronization between the registration

and distribution stages in the GPU code.

Filtering workload Filtering plays a critical role in improving performance

for certain graph applications [6]. As such, the work IDs distributed by Sparse-

Weaver must be filtered whenever possible. Specifically, filtered work IDs

should be returned if filtering based on the base vertex ID is feasible. How-

ever, since the primary objective of SparseWeaver is to distribute work IDs

efficiently, it avoids introducing additional structures or logic for tasks that

can be handled within the GPU pipeline.

To achieve this, the SparseWeaver compiler inserts filters into the registra-

tion stage when they relate to the base vertex ID. It also inserts code to set the

degree to zero for any filtered vertices, ensuring that no corresponding work

IDs are generated during the distribution stage.

Moreover, some algorithms, such as BFS, do not require processing all

neighbors during gather operations once the necessary information has been
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obtained. In these scenarios, an early exit from the distribution stage for a

specific vertex ID may be required. This is particularly relevant for supern-

odes with a large number of neighbors, where decoding might need to ter-

minate midway. To support this functionality, SparseWeaver requires an ISA

extension that allows Weaver to skip decoding for specific vertex IDs and ex-

clude them from further processing.

✝Design Decision: Integrate a filter into the GPU code at the appro-

priate location and send a skip signal when no further distribution is

needed for a specific vertex.

4.4.4 Assembling Design Decisions

Figure 4.7 presents the complete workflow of SparseWeaver, illustrating how

warps execute over time and how tasks are offloaded to SparseWeaver. Within

the GPU core, execution follows the sequence of registration, synchronization,

and distribution.

During the registration stage, the GPU core gathers shared data such as

vertex IDs, locations, and degrees to deliver this information to Weaver. As-

suming out-of-order warp execution, Weaver stores shared data in the Sparse

Work Information Table, indexed by warp ID and thread ID. For instance, as

depicted in Figure 4.7, three warps execute in the order Warp 0, 2, 1, with the

shared data from Warp 2 being stored in entries 8, 9, 10, and 11 of the ST. If a

vertex is filtered, the corresponding thread sets its degree to 0 during the in-

vestigation process. Upon completing the registration stage, all active warps

wait for synchronization to ensure all warps have registered their data.

In the distribution stage, the GPU core issues decode requests to retrieve
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work IDs generated by Weaver. As shown in Figure 4.7, Warp 1 sends the first

decode request for VID to Weaver. Following the FSM described in Figure 4.6,

Weaver processes ST entries such as (0, 2, 1), (2, 10, 2), and (4, 30, 5) to generate

the OD buffer with (0, 2), (2, 10), (2, 11), and (4, 30). Weaver then returns VIDs

(0, 2, 2, 4) to the GPU core and stores the corresponding EIDs (2, 10, 11, 30) in

the Dense Work ID table. When Warp 1 sends a decode request for edge IDs,

Weaver provides EIDs (2, 10, 11, 30). Using these edge IDs, warps can filter the

opposite vertex IDs by accessing them.

By assembling the design decisions detailed in Chapter 4.4.3, SparseWeaver

effectively integrates Weaver into the GPU execution pipeline, ensuring seam-

less operation within the overall workflow.

4.5 SparseWeaver Framework

Figure 4.8 provides a system overview of SparseWeaver. The SparseWeaver

system accepts input User Defined Functions (UDFs) for algorithms and graphs

using a storage format, a storage format interface, and a specified direction.

The UDFs comprise four distinct methods: init, gather, apply, and filter.

Users decompose a graph algorithm into these methods, similar to other graph

processing frameworks [18]. Since the input graph is stored in a specific stor-

age format, such as Compressed Sparse Row (CSR), the user leverages the stor-

age format interface to allow SparseWeaver to access the storage format. The

storage format interface provides two methods, getNeighbor and getEdge, to

retrieve graph topology and edge information [18]. The direction indicates

whether the gathering process focuses on incoming or outgoing edges.
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The SparseWeaver frontend compiler processes the graph algorithm and

generates GPU kernel code, while the backend compiler performs target-specific

optimizations and produces the GPU binary. The compiled binary is executed

on the SparseWeaver GPU with Weaver support. To implement Weaver, we

use the open-source RISC-V GPU, Vortex [63, 64, 65], in conjunction with PoCL

[66] and LLVM [67] as the frontend and backend compilers, respectively.

4.5.1 SparseWeaver Instruction

Table 4.2 outlines the SparseWeaver instructions, which act as the interface

for exchanging inputs and outputs with Weaver. The SparseWeaver system in-

cludes a WEAVER_REG instruction to register the base vertex ID, start edge ID,

and degree. Additionally, it provides two output instructions to retrieve data

from the SparseWeaver microarchitecture: WEAVER_DEC_ID, which returns

the vertex ID, and WEAVER_DEC_LOC, which returns the edge ID. The system

also incorporates the WEA-VER_SKIP instruction, allowing specific vertices to

be skipped during decoding.

Our implementation is based on a RISC-V open-source GPU, so the instruc-

tions are defined in the RISC-V format. According to the RISC-V manual [68],

WEAVER_DEC_ID and WEAVER_DEC_LOC are implemented as R-type instruc-

tions [68], structured with opcode, rd, funct3, rs1, rs2, and func7. Meanwhile,

WEAVER_REG is implemented as a CUSTOM instruction, formatted with op-

code, rd, funct3, rs1, rs2, funct2, and r3. We utilize funct3 and funct2 to dif-

ferentiate between these instructions.

An essential aspect is that one of the output instructions must signal the

termination of the work distribution loop. While the thread mask can deter-
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Table 4.2: SparseWeaver instructions

Instruction IType Opcode funct Description
WEAVER_REG, VID, loc, deg C CUSTOM1 1 Register VID, loc, deg

WEAVER_DEC_ID, VID R CUSTOM0 7 Return VID of next workload
WEAVER_DEC_LOC, EID R CUSTOM0 8 Return EID of next workload

WEAVER_SKIP, VID C CUSTOM1 2 Send skip signal using VID

mine whether tasks proceed, it cannot explicitly indicate the exit status, as

deactivating all threads could result in an unintended termination state. To

address this, the WEAVER_DEC_ID instruction returns -1 to signify the end of

the loop. When all active threads return -1, SparseWeaver concludes the dis-

tribution stage.

4.5.2 SparseWeaver Compiler and Runtime

The compilation process is divided into distinct frontend and backend stages

by leveraging the updated PoCL and LLVM to incorporate the Weaver ISA and

device-specific runtime libraries. Each stage performs essential optimizations

to adapt the kernel for the target architecture effectively.

The SparseWeaver frontend compiler takes user inputs and produces graph

processing kernels, as illustrated in Figure 4.9. The frontend compiler applies

two key optimizations. First, it performs Built-in Library Linking, integrat-

ing functions such as atomic operations or math utilities tailored to the spe-

cific hardware target. Second, it carries out Graph Kernel Generation, com-

bining Weaver ISA intrinsics, user-defined functions, and the storage format

interface to construct the kernel.

Figure 4.9 provides an example of a pull-direction kernel generated by

the frontend compiler. This kernel traverses incoming edges based on the
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1 void SparseWeaverGatherKernel(wset, graph) {
2 tid = get_thread_id() // Get the TID
3 // Registration step
4 for (id = wset.base_id + tid; id < wset.bound; id += wset.stride) {
5 vid = getFrontier(id)
6 if (dest_filter(vid))
7 continue
8 start, end = getNeighbor(graph, ...)
9 WEAVER_REG(vid, start, end - start)}

10 synchronization()
11 while (true) { // Distribution step
12 vid = WEAVER_DEC_ID()
13 if (vid == -1)
14 break
15 eid = WEAVER_DEC_LOC()
16 src, dest, weight = getEdge(eid...)
17 if (dest_filter(dest))
18 WEAVER_SKIP(dest)
19 if (src_filter(src))
20 continue
21 computeFn(loc, src, dest, weight)
22 }
23 }

Figure 4.9: Generated SparseWeaver gather kernel (Pull)

destination vertex ID for gather processing. It begins with the registration

stage (lines 4 to 9) followed by the distribution stage (lines 11 to 22). In the

registration stage, the kernel uses the WEAVER_REG intrinsic to pass shared

data to Weaver (line 9). During the distribution stage, the WEAVER_DEC_ID

and WEAVER_DEC_LOC intrinsics decode work IDs (line 12 and line 15). De-

pending on the specified direction, the compiler inserts filters at appropriate

stages. For pull-direction processing, it adds a destination filter in the regis-

tration stage, incorporating the WEAVER_SKIP intrinsic (line 18).

The SparseWeaver backend compiler processes the intermediate repre-

sentation (IR) generated by the frontend compiler and performs Thread Ac-

tivate Code Insertion before translating it into GPU binary through device-
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specific kernel translation. This stage introduces target-specific optimizations,

such as thread mask control logic, to ensure all threads within a warp are ac-

tivated during the distribution phase and subsequent gather steps.

For instance, on the Vortex GPU, the backend compiler inserts code to store

the warp’s thread mask and activates all threads before entering the distribu-

tion loop (line 11 in Figure 4.9). After completing the distribution loop, it re-

stores the thread mask. Additionally, the backend compiler expands the ISA

Table, incorporating the instructions in Table 4.2, to support kernel transla-

tion. With these compiler enhancements, SparseWeaver generates the GPU

code required for efficient graph processing.

4.5.3 Weaver Implementation

SparseWeaver is implemented on the Vortex GPU by extending the Special

Function Unit (SFU) to include Weaver, as depicted in Figure 4.8. When the

GPU core decodes and executes Weaver instructions, it can issue either a reg-

ister request or a decode request to Weaver.

The Sparse Work Information Table and Dense Work ID Table in Weaver

can be realized using registers or shared memory. We opted to implement

these tables in shared memory for several reasons. The Vortex GPU has a con-

strained register count but provides fast access to shared memory. Further-

more, SparseWeaver requires relatively few table accesses—only one read

and write per graph topology data—compared to the large number of edges

being processed. As a result, table access overhead is minimal and can be ef-

fectively hidden by the GPU pipeline’s execution. Further analysis of this im-

plementation is provided in Chapter 4.6.4.
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Graph Name Number of Nodes Number of Edges
bio-human-gene1 (BH) 22,284 24,691,926
bio-mouse-gene (BM) 45,102 29,012,392
roadNet-CA (RN) 1,971,282 553,321
road-central (RC) 14,081,817 3,386,682
web-uk-2005 (UK) 129,633 23,488,098
graph500-scale19 (G500) 335,319 15,459,350
COLLAB (CO) 372,475 49,144,316
hollywood-2011 (HW) 2,180,653 228,985,632
web-wikipedia (WK) 2,936,414 104,673,033

Table 4.3: Graph dataset information [31]

4.6 Evaluation of SparseWeaver

We evaluate the performance of SparseWeaver using four graph algorithm

operators and GCN on seven datasets, comparing it against four software sched-

ules (VM, EM, WM, CM [7]) and an edge-generating hardware approach (sim-

ilar to hardware-based schemes [54, 55, 56]) on the open-source RISC-V GPU,

Vortex [63, 64, 65].

SparseWeaver is modeled on the Vortex GPU, which provides an open-

source software stack, a cycle-level simulator, and an RTL hardware descrip-

tion. The simulator, Simx, achieves cycle-level accuracy within 6% of the RTL

model [64], enabling accurate performance testing for SparseWeaver. Addi-

tionally, LLVM [67] and PoCL [66] were extended to support the Weaver ISA

and include compiler optimizations for Vortex [69].

The evaluation is conducted using Vortex hardware configurations with

two sockets, three cores per socket, 32 warps per core, and 32 threads per

warp. L1 and L2 cache sizes are configured as 64KB and 1MB, respectively. To

account for SparseWeaver’s hardware overhead, the L1 cache size is reduced
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to 32KB to accommodate 512 entries in the Sparse Work Information Table

and the Dense Work ID Table per core.

Hardware overhead is analyzed by extending the Vortex RTL and synthe-

sizing it using Quartus Prime Pro 8.1, targeting the Intel Stratix 10 FPGA. The

evaluation utilizes seven datasets listed in Table 4.3 and examines four al-

gorithms: PageRank (PR)[33], Connected Components (CC)[34], Breadth-First

Search (BFS)[70], and Single Source Shortest Path (SSSP)[70].

4.6.1 Comparison with Software-based Schemes

Figure 4.10 shows that SparseWeaver improves performance for most algo-

rithms. SparseWeaver achieves 2.36x speedups for the vertex mapping and

2.63x speedups for the edge mapping. SparseWeaver achieves 2.73x, 2.64x,

2.71x, and 1.60x speedups over the VM for BFS, SSSP, PR, and CC.

In detail, SparseWeaver surpasses all other software schedules across the

four evaluated benchmarks. Its performance is particularly notable in the BFS

and SSSP benchmarks, which involve destination and source filters that exac-

erbate load imbalances among vertices. These imbalances allow SparseWeaver

to achieve significant speedups compared to other schedules. BFS exhibits a

more significant speedup than SSSP due to the absence of edge weight pro-

cessing in BFS.

For PR and CC, which process all edges during the gather step, the balanced

workload provided by SparseWeaver enhances performance. This workload

balance also enables coalesced memory access during edge information re-

trieval in the PR algorithm, a feature that the VM fails to exploit effectively.

Consequently, all other schedules demonstrate improved performance over
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Figure 4.11: Skewness Sensitivity (a) shows the graph degree distribution of
G1 (low skewness) and G6 (high skewness) (b) shows speedups over VM when
increasing skewness

VM when running PR.

4.6.2 Skewness Sensitivity

To evaluate the sensitivity of each schedule to skewness [71] in graph data, we

compared SparseWeaver with VM and EM schedules using the PageRank algo-

rithm. Graph datasets were generated using the NetworkX Power-law graph

generator, maintaining a fixed number of edges (1.9M) while varying the num-

ber of vertices (10k, 12k, 16k, 20k, 40k, 80k).

Figure 4.11a illustrates the degree distribution of the G1 and G6 graphs. G1,

characterized by a smaller number of vertices and lower skewness, exhibits

a narrow degree distribution and a short edge fraction tail. Conversely, G6,

with a larger vertex count and higher skewness, displays a broader degree

distribution and an extended edge fraction tail. The skewness increases as

the graph index progresses from G1 to G6, resulting in progressively greater
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workload imbalances.

The impact of skewness is evident when comparing EM and VM perfor-

mances in Figure 4.11b. As workload imbalance worsens, their performances

converge, even though EM incurs double, the memory reads for edges com-

pared to VM. In contrast, SparseWeaver demonstrates a performance trend

similar to EM, indicating that its workload balancing effectively mitigates the

impact of data skewness.

4.6.3 Effect of Memory Configuration

Figure 4.12 shows the relationship between cycle count and the memory ratio

to GPU core frequency, ranging from 1 to 6, using VM, EM, and SparseWeaver

with the PageRank algorithm. Here, n represents the GPU core frequency,

which is n times higher than the DRAM frequency. This trend highlights that

graph processing is a memory-intensive workload. Across all frequency ra-

tios, Sparse-Weaver outperforms both VM and EM. By effectively mitigating

workload imbalance and reducing memory access, SparseWeaver achieves a

lower total cycle count, leading to better performance.

4.6.4 Effect of Work Table Access

Figure 4.15 illustrates the impact of shared memory access on the Sparse

Workload Information Table and Dense Work ID Table, with shared mem-

ory read overheads set to 10, 20, 40, 80, and 160 cycles. The results show

that SparseWeaver effectively conceals shared memory read latency through

the GPU pipeline. Tests were conducted on a Vortex configuration with eight

cores, 32 warps, and 32 threads using the PageRank algorithm. Since only a
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single scan is required per table entry, performance remained stable even as

read latency increased, demonstrating that other instructions in the pipeline

successfully mask the effects of cache read delays.

4.6.5 Cache and Memory Analysis

Figure 4.13 compares performance between two configurations: L1 & L2 cache

versus L1 & L2 & L3 cache. The results indicate that the presence of an L2

cache significantly affects performance, while adding an L3 cache provides
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no noticeable improvement when comparing the L1 & L2 configuration with

L1 & L2 & L3. Figure 4.14 further examines performance by varying the cache

sizes: L1 from 16KB, 32KB, to 64KB, and L2 from 0.25MB, 0.5MB, 1MB, 2MB,

4MB, to 8MB. The results show that increasing cache size has minimal impact

on performance, suggesting limited sensitivity to cache size in this context.

4.6.6 Hardware Overhead

To evaluate the area overhead of the hardware implementation, SparseWea-

ver was modeled in RTL for the Vortex GPU. The RTL was synthesized using

Quartus Prime Pro 18.1, targeting the Intel Stratix 10 FPGA. For a single core,

the logic for the Workload Info Table and Work ID Table (Figure 4.7) resulted

in an additional 678 dedicated logic registers. Meanwhile, implementing the

SparseWeaver FSM and associated logic to support the new instructions re-

quired an increase of 3109 adaptive logic modules (ALMs).

The per-core overhead incurred by SparseWeaver is minimal, with a 0.045
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Figure 4.15: Execution cycle by changing cache read overhead from 10, 20, 40,
80, 160 cycles.

% increase in dedicated logic registers and a 2.96% increase in ALMs due to

the Sparse Workload Info Table, Dense Work ID Table, and FSM. For a 16-core

configuration, the ALM usage increases by only 2.01% compared to the default

16-core setup.

This reflects a negligible area overhead in hardware, as SparseWeaver

does not increase the utilization of block memory, RAM blocks, or DSP blocks.

A detailed summary of the FPGA resource usage is presented in Table 4.4, and

Figure 4.16 visually illustrates the area increase for both single-core and 16-

core GPUs.

In terms of developmental overhead, the hardware implementation re-

quired 251 additional lines of System Verilog code. Compared to the original

codebase of 184,449 lines, this represents a mere 0.136%

4.6.7 Push and Pull Breakdown

Figure 4.17 presents the performance breakdown for the Push and Pull direc-

tions.

During the registration phase, the cycle counts for Push and Pull are nearly
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Vortex GPU configuration Total
ALMs

ALM %
increase

Block memory
% increase

RAM %
increase

DSP %
increase

1-core default 105,094 2.96% 0% 0% 0%1-core w/ SparseWeaver 108,203
16-core default 580,332 2.01% 0% 0% 0%16-core w/ SparseWeaver 591,971

Table 4.4: The area overhead of SparseWeaver in terms of FPGA resources
utilized.

(a) (b) (c) (d)

Figure 4.16: Block utilization diagrams for different configurations of the Vor-
tex GPU synthesized on the Stratix 10 FPGA where blue indicates a used block,
and the red box indicates a major difference in the utilized blocks. (a) A single
core of the GPU (b) A single core of the GPU with SparseWeaver (c) A 16-core
GPU (d) A 16-core GPU with SparseWeaver
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Figure 4.17: Execution cycle breakdown of the gather process with Push and
Pull using PageRank. The breakdown includes five steps: Init, Registration,
Work ID calculation, Edge information access, and Gather & Sum.

identical, with less than a 1% difference. Similarly, the summation cycles for

Edge scheduling and Edge information access are comparable in both direc-

tions, as a symmetric graph dataset is used. However, the gather and sum cy-

cles vary depending on the dataset. For instance, Push requires fewer cycles

for datasets like Dwk and RC, whereas Pull demonstrates better performance

for other datasets.

4.6.8 Case Study 1: Existing Hardware-based Scheme

In this case study, we compare SparseWeaver to edge-generating hardware

(EGHW) mode, which is similar to existing hardware-based schemes [54, 55,

56]. In EGHW, all operations within the edge schedule (depicted in the blue

box of Figure 4.5) are handled by hardware, excluding vertex filtering. This

includes examining the graph topology of vertices and accessing edge infor-

mation.

In EGHW mode, the GPU writes vertex IDs to a buffer in shared mem-
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Figure 4.18: The execution time breakdown for the gathering process is
compared between EGHW and SparseWeaver using the PageRank algorithm
across seven graph datasets. The breakdown consists of five steps: Init, Reg-
istration, Work ID Calculation, Edge Information Access, and Gather. Exe-
cution times are normalized relative to the cycle count of the Init step in
SparseWeaver.

ory, and EGHW accesses graph topology data by reading these IDs. EGHW

then performs remapping and writes edge data, such as the opposite ver-

tex ID and weight, back into the buffer. Consequently, the GPU must wait for

edge information from EGHW before proceeding with gather and sum oper-

ations. By offloading graph topology and edge information access to Weaver,

SparseWeaver enables hardware-level generation of edge information.

Figure 4.18 presents a performance comparison between EGHW and Wea-

ver. SparseWeaver achieves a geometric mean speedup of 3.64x compared to

EGHW. This improvement primarily stems from the distribution stage, includ-

ing Work ID Calculation, Edge Information Access, and Gathering.

The performance disparity arises because EGHW does not effectively hide

the overhead of memory reads for edge information and requires additional

shared memory access to store and retrieve edge data from the buffer. Fur-
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Figure 4.19: Performance of GCN operators with three different schedules, VM
parallelized by weight, EGHW and SparseWeaver

thermore, stalls in Edge Information Access affect the Gather step due to de-

pendency on edge data loads. Although adding pipelines and more advanced

logic could improve Edge Information Access in EGHW, SparseWeaver achiev-

es efficient memory access by leveraging the GPU pipeline in its design.

4.6.9 Case Study 2: Performance with GCN

This case study highlights the extensibility of SparseWeaver by comparing

its performance in executing the Graph Convolution Network (GCN) opera-

tor [72] under vertex and weight parallelization strategies. The GCN experi-

ment evaluates three kernels: initialization, sparse matrix-matrix multiplica-

tion (SpMM), and mean aggregation (GraphSum) across 16 weight dimension

sizes. As a baseline, we modify the VM mapping to first parallelize the weight

dimension and then the vertex dimension for executing the SpMM and Graph-

Sum kernels. In this configuration, each thread gathers specific weights across

the neighbor list of a vertex, eliminating the need for atomic operations dur-

ing weight updates. Conversely, our approach continues to parallelize edge

updates, iterating over the weight dimension while using atomic operations.
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Figure 4.19 shows that SparseWeaver achieves a 6.15-fold speedup com-

pared to VM. While SpMM benefits from weight parallelization and reduced

reliance on atomic operations, resulting in improved performance with VM,

SparseWeaver outperforms VM in the GraphSum kernel. This is due to its abil-

ity to lower the cost of coefficient calculations, which depend on the degrees

of source and destination vertices. Since GraphSum requires more compu-

tation time overall, SparseWeaver demonstrates superior performance com-

pared to VM.

4.6.10 Case Study 3: Comparison with GRAssembler

GRAssembler with A30 SparseWeaver
(108 SM, 64 warps/core, 1200Mhz) (8 cores, 32 warps/core)

Tuning Time (sec) VM (ms) Best (ms) Speedup VM (ms) SW (ms) Speedup
HW 4502.83 18.92 8.78 2.16 5408.33 1016.67 5.32
UK 1446.57 1.45 0.69 2.11 400.83 173.33 2.61
CO 1710.66 2.63 1.40 1.88 916.67 216.67 4.23
RN 1139.41 0.47 0.32 1.47 453.01 247.68 1.83

Table 4.5: Speedup over VM Comparison using GRAssembler and
SparseWeaver with PageRank

Table 4.5 compares the performance improvements of the existing Auto-

tuner [18] and SparseWeaver relative to VM. Although the hardware config-

urations, including the number of parallel units, differ between the Nvidia

GPU tested with the Autotuner and the SparseWeaver setup, the results in-

dicate that SparseWeaver achieves better performance compared to VM. No-

tably, this is accomplished without the additional tuning time required by the

Autotuner.
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4.7 Discussion

4.7.1 Integrating into GRAssembler

Even though this research shows the effectiveness of GRAssembler using three

different GPUs (NVIDIA RTX 3090, 4090, and A100), the GPU architectures,

drivers, and even programming languages are evolving rapidly. As shown in

Chapter 3, this research proposes a new auto-tuner to optimize graph pro-

cessing for anonymous input graphs and algorithms on a GPU by decoupling

schedules and storage formats. While our solution can find optimal configura-

tions through auto-tuning, even as GPU architectures evolve, supporting new

hardware features requires extensions. For instance, hardware features such

as sparse cores and tensor cores are examples. Therefore, as future work, the

auto-tuner could be extended by incorporating new options, such as enabling

hardware-specific features.

Integrating SparseWeaver into GRAssembler or other auto-tuners could

be achieved by extending hardware options. SparseWeaver represents an ex-

tension of GPUs through new microarchitectural features and often demon-

strates greater effectiveness compared to software-based schedules for di-

verse graphs. Consequently, if the auto-tuner can be executed on GPUs sup-

porting SparseWeaver, it could enable the hardware option SparseWeaver, po-

tentially eliminating the need to explore software schedules while retaining

the use of software schedules for GPUs that do not support SparseWeaver.
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4.7.2 General Usage of SparseWeaver

We believe that SparseWeaver can extend its applicability to other sparse ap-

plications, particularly those originally using the CSR format, such as GPU

hashing, MapReduce, Graph Neural Networks, or sparse matrix multiplica-

tion. These applications handle sparse data, such as hash tables containing

sparse workload information. For example, Algorithm 4.1 shows a possible

implementation of GPU hash lookup. The sparse workload information can

store the position of each key-value pair within hash table buckets [73]. Sparse-

Weaver can replace the second for loop to distribute hash operations across

multiple threads, as the offset array contains workload information.

Algorithm 4.1: The GPU hash lookup [73]
Input: keys : Input Hash Keys

offset: offset array pointing to the ranges of bucket
1 foreach key ∈ keys do
2 bucket← hash(key)
3 for i ∈ range(offset[bucket], offset[bucket+1]) do
4 if hashtable[i] == key then
5 ...
6 end
7 end

4.8 Summary

This research proposes a new collaborative hardware and software graph

processing framework SparseWeaver. SparseWeaver effectively addresses the

workload imbalance in the graph processing on GPU by converting the sparse

operations into dense operations. Based on the analysis of common patterns

in software schemes, we propose a hardware logic, called Weaver, new lightw-
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eight hardware that is tightly integrated into the GPU pipeline with simple ISA.

With only 0.045% additional dedicated logic registers and 2.96% additional

ALMs in a single core, SparseWeaver achieves a performance speedup that

is 2.36 times faster on real-world graph datasets compared with the software

scheme.
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Chapter 5

CONCLUSION

Executing an algorithm domain on a hardware domain encounters various

optimization opportunities. Focusing on which component among fundamen-

tal components, such as hardware, algorithms, and memory, can offer multi-

ple optimization points of view and opportunities. When different optimiza-

tions target different aspects, understanding the relationships between these

optimizations and creating synergies can unlock new levels of performance

enhancement. However, attempting to blindly implement all possible combi-

nations of optimizations would undoubtedly result in a significant implemen-

tation burden. Therefore, it is evident that abstraction methods are required

to explore optimization combinations efficiently across fundamental compo-

nents.

This research aims to open up a new area of optimization of graph pro-

cessing on GPU by decoupling the three key components, such as algorithm,

schedule, and storage format. Through this approach, the research enhances

the coverage, composability, extendability, and modularity of graph process-

ing on GPUs. We begin by analyzing the characteristics of the existing opti-

mizations, presenting a fundamental abstraction interface for each key com-

ponent. This research proposes GRAssembler, a new GPU graph processing

framework that efficiently integrates the decoupled schedule, storage format,
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and algorithm without abstraction overhead.

Furthermore, by deeply exploring storage format and schedule during the

abstraction process, this research uncovers new workload balancing optimiza-

tion opportunities for storage format and schedule and expands the tuning

space. In terms of storage format, this study identifies that no existing storage

format provides fine-grained workload balancing with low memory usage

while maintaining high performance. To address this, the study proposes CR2,

a new storage format composed of community-aware and degree-ordered

subgraphs, optimized for GPU and highly skewed real-world graph character-

istics. Regarding schedule, the study observes that existing schedules incur

large overhead for workload rebalancing due to frequent access to shared

memory and synchronization methods. To mitigate this, the research intro-

duces SparseWeaver, a microarchitecture that converts sparse operations into

dense operations to accelerate schedule process, ensuring balanced work-

loads across GPU threads with low area overhead.
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국문초록

GPU에서그래프의균형처리를위한스케줄과저장형식의분리

올바른 스케줄와 저장 방식을 선택해야지만 그래프 알고리즘를 GPU에서 효율적으로 처리

할수있다.기존 GPU그래프처리프레임워크는알고리즘에대해최적의스케줄와저장방식을

찾기 위해 튜닝 공간에 대해 반복적인 탐색 방식을 수행하지만, 그들의 스케줄들과 저장 방식들

이 처리 모델 상에서 긴밀하게 결합되어 있기 때문에 저장 방식을 고려한 최적의 조합을 찾는데

어려움을 겪는다. 또한, 이러한 결합은 개발자가 튜닝 공간을 확장하는 것을 어렵게 만든다. 그

러나 최적화 조합을 탐색하기 위해 가능한 모든 최적화 조합을 구현하는 것은 상당한 구현 부담

을 초래한다. 따라서 기본 구성 요소 전반에 걸쳐 최적화 조합을 효율적으로 탐색하기 위해서는

스케줄과저장방식의명확한분리가필수적이다.

본 학위 논문은 GPU에서의 그래프 처리 과정에서 세 가지 핵심 구성 요소인 스케줄, 저장

방식, 그리고 알고리즘을 분리하는 추상화를 제시함으로써 튜닝 공간을 확장하고자 하였다. 본

논문은 기존 최적화의 특성을 분석하고, 각 핵심 구성 요소에 대한 기본 추상화 인터페이스를

제시하며, 새로운 그래프 처리 모델을 제시한다. 또한, 이 연구는 스케줄, 저장 방식, 알고리즘

을 분리 할 뿐만 아니라 추상화 오버헤드 없이 효율적으로 통합하는 새로운 GPU 그래프 처리

프레임워크인 GRAssembler를제안한다.이러한접근방식을통해해당연구는 GPU에서의

그래프처리의커버리지,조합가능성,확장성,모듈성을향상시킨다.

더나아가,본연구는분리된추상화가기존연구들을통합할뿐만아니라성능향상을위한

기회를 발견하는데 도움이 됨을 보였다. 첫째, 본 연구는 추상화 인터페이스의 동작을 고려함으

로써새로운최적화를제안할수있음을보였다.저장방식이메모리엑세스패턴을결정한다는

점에초점을맞추어,이연구는그래프와 GPU의특성에맞춘메모리접근패턴을가능하게하는

새로운 저장 방식인 CR2 을 제안한다. 둘째, 기존 연구들의 추상화된 동작들을 분석함으로써
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하드웨어로 쉽게 가속 가능한 부분을 찾을 수 있음을 보였다. 이 연구는 기존 스케줄이 균형을

맞추기 위해 정보를 공유하고 생성하는 과정에서 하드웨어의 부재로 인한 런타임 오버헤드를

가짐을 관찰하고, 스케줄을 가속화하기 위해 희소 연산을 밀집 연산으로 변환하는 새로운 경량

GPU기능유닛마이크로아키텍처인 SparseWeaver를제안한다.

결과적으로,이러한효율적인분리와통합덕분에, GRAssembler는튜닝공간을 336에서

4,480으로 확장하였으며, 최신 GPU 그래프 처리 프레임워크와 비교했을 때 기하 평균 성능이

30.4%향상되었다.또한, CR2 저장방식은기존저장방식들에비해 1.53배의성능향상을이루

면서메모리사용량을기하평균기준 32.1%줄였으며, SparseWeaver는전용로직레지스터

증가로인한 0.045%의낮은영역증가를통해기존스케줄방법보다 2.49배빠른실행시간을

보여주었다.

핵심되는말:그래프처리, GPU,저장방식,스케줄,최적화,부하분산,자동튜닝
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