
Fine-Grained Compiler Optimization with

Split-Schedule-Merge for Specialized Domains

Seungbin Song

The Graduate School

Yonsei University

Department of Electrical and Electronic Engineering

Fine-Grained Compiler Optimization with

Split-Schedule-Merge for Specialized Domains

A Dissertation Submitted

to the Department of Electrical and Electronic Engineering

and the Graduate School of Yonsei University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Electrical and Electronic Engineering

Seungbin Song

June 2024

This certifies that the Dissertation
of Seungbin Song is approved.

Thesis Supervisor Prof. Hanjun Kim

Thesis Committee Member Prof. Won Woo Ro

Thesis Committee Member Prof. William Jinho Song

Thesis Committee Member Prof. Youngsok Kim

Thesis Committee Member Prof. Seonyeong Heo

The Graduate School
Yonsei University

June 2024

ACKNOWLEDGMENTS

”Surely your goodness and love will follow me all the days of my life,

and I will dwell in the house of the LORD forever.” - Psalms 23:6 (NIV)

항상선한길로인도하시고인자하심으로이끌어주신하나님께감사드립니다.

학부생의시작부터박사과정의끝까지지도해주신김한준교수님께진심으로감사드립니

다. 10년이넘는시간동안수많은조언과가르침으로저를지도하시어제가한명의연구자로

성장할수있도록해주셨습니다. 교수님께서주신가르침을항상마음속에담고,앞으로스스

로의가치를증명하고발전하는연구자가될수있도록더욱정진하겠습니다.

학위논문심사를맡아주신노원우교수님,송진호교수님,김영석교수님,허선영교수님

께감사드립니다. 교수님들께서주신값진피드백과의견을반영하여연구를더욱발전시킬수

있었고,학술대회논문을준비함에있어좋은결과를얻을수있었습니다. 본연구가학위논문

에서그치는것이아니라향후에연구를더발전시키도록노력하겠습니다.

저의박사과정동안의연구는컴파일러최적화연구실의수많은선후배들의도움이없었

다면불가능했을것입니다. 포항에서부터저를이끌어주신선배님이신이경민박사님,김봉준

박사님,김창수박사님,허선영교수님께진심으로감사드립니다. 그리고연구실에서동고동락

하며함께한이용우박사,정신녕,김동관,이재호,최희림,천선영,윤성우,이주민,권현호,염호

윤,이찬,정건모,정해은에게감사드립니다.

저를낳아주시고길러주신사랑하는부모님께감사드리고,박사학위를받은형에게축하

를전합니다. 신앙적으로안식처가되어준연세대학교회대학청년부목사님과친구들에게도

감사드립니다. 마지막으로박사과정동안사랑으로함께한정민정에게감사와사랑을전합니

다. 이들의삶속에하나님의사랑과축복이가득하길진심으로기도합니다.

TABLE OF CONTENTS

LIST OF FIGURES . iv

LIST OF TABLES . vi

LIST OF ALGORITHMS . vii

ABSTRACT . viii

1. INTRODUCTION . 1

2. BACKGROUND & MOTIVATION . 9

2.1 Network Programming . 9

2.1.1 Software-Defined Networking . 9

2.1.2 Structure of P4 Language . 11

2.1.3 Limitations of Existing Network Compilers 16

2.2 Tensor Decomposition in Deep Learning . 18

2.2.1 Tensor Decomposition Methods . 18

2.2.2 Number of Operations of Decomposed Convolution Sequences . . . 21

2.2.3 Memory Usage of Decomposed Convolution Sequences 22

2.2.4 Limitations of Existing Tensor Decompositions 28

2.3 Motivation . 29

3. SPLIT, SCHEDULE, MERGE FOR NETWORK PROGRAMS 32

i

3.1 Overview . 32

3.2 Splitting Scheme . 34

3.2.1 Table Decomposition . 34

3.2.2 Dependency Analysis . 36

3.3 Scheduling Scheme . 38

3.3.1 Clock Cycle Estimation . 39

3.3.2 Pipeline Scheduling Algorithm . 41

3.4 Merging Scheme . 43

3.4.1 Code Generation . 43

3.4.2 Backend Optimization and Function Fusion 44

4. SPLIT, SCHEDULE, MERGE FOR DEEP LEARNING MODELS 46

4.1 Overview . 46

4.2 Splitting Scheme . 48

4.2.1 Tensor Decomposition and Inlining 48

4.2.2 Dependency Analysis . 49

4.3 Scheduling Scheme . 50

4.3.1 Identifying Skip Connections . 51

4.3.2 Finding Precedent Reduced Tensors and Restore Layers 53

4.3.3 Evaluating FLOPS and Memory Trade-Offs 56

4.3.4 Replacing Skip Connections . 59

4.4 Merging Scheme . 60

4.4.1 Activation Layer Fusion . 60

4.4.2 Concatenation Layer Transformation 66

ii

5. EVALUATION . 72

5.1 PSDN Compiler . 72

5.1.1 Evaluation Setup . 72

5.1.2 Latency . 74

5.1.3 Resource Utilization . 77

5.1.4 Throughput . 80

5.2 TeMCO Compiler . 81

5.2.1 Evaluation Setup . 81

5.2.2 Peak Memory Usage . 82

5.2.3 Inference Time . 84

5.2.4 Accuracy . 86

6. DISCUSSION . 89

6.1 PSDN Compiler . 89

6.2 TeMCO Compiler . 91

7. RELATED WORK . 95

7.1 Network Compilers . 95

7.2 Tensor Decomposition . 97

7.3 DNN Framework for Memory-Efficient Deep Learning 99

8. CONCLUSION . 101

REFERENCES . 103

ABSTRACT IN KOREAN . 127

iii

LIST OF FIGURES

2.1 A brief structure of software-defined networking 10

2.2 The table pipeline’s simplified grammar in the P4 language 12

2.3 An P4 program example . 14

2.4 The latency percentage of a parser, a table pipeline, and a deparser 15

2.5 A P4 table’s use (U) and def (D) . 17

2.6 Tensor decomposition methods . 19

2.7 Tensor decomposition on a convolution layer 20

2.8 Tensor decomposition on a convolution sequence 23

2.9 Memory usage of internal tensors . 27

3.1 The PSDN compiler . 33

3.2 Table decomposition example of Lines 27 to 33 in Figure 2.3 34

3.3 Match and action functions of Table forward in Figure 2.3 35

3.4 Code motion on match functions . 36

3.5 Program dependence graph . 37

3.6 Function cycle estimation . 39

3.7 A scheduled pipeline . 43

3.8 Function fusion methods . 45

iv

3.9 A fused pipeline . 45

4.1 The TeMCO compiler . 47

4.2 Tensor decomposition example . 48

4.3 Program dependence graph . 49

4.4 Skip connection optimization example . 53

4.5 Fused layer in Figure 2.8c . 60

4.6 The fused kernel code of lconv - ReLU - fconv 62

4.7 The fused kernel code of lconv - ReLU - Pool - fconv 63

4.8 Activation layer fusion code example . 65

4.9 Concatenation layer transformation . 67

4.10 Dividing fconv code example . 69

4.11 Merging lconv code example . 70

5.1 Packet processing latency . 74

5.2 Latency of functions in Learning Switch . 75

5.3 PDG of Learning Switch translated into SDNet IR 76

5.4 Resource utilization . 78

5.5 Throughput and the number of processed packets 79

5.6 Peak memory usage . 83

5.7 End-to-end inference time . 85

5.8 Accuracy . 86

v

LIST OF TABLES

3.1 Cycle estimation of match functions . 40

5.1 P4 benchmarks from P4-NetFPGA GitHub [76] 73

5.2 Accuracy with ADMM training [15, 17] . 87

vi

LIST OF ALGORITHMS

3.1 Pipeline scheduling algorithm . 42

4.1 Skip connection optimization . 50

4.2 Liveness analysis . 52

4.3 Finding reduced tensors and restore layers . 54

4.4 Computation and memory overhead check . 56

vii

ABSTRACT

Fine-Grained Compiler Optimization with

Split-Schedule-Merge for Specialized Domains

Domain-specific languages support programmabilities for programmers to imple-

ment and extend functions that fulfill the users’ demands. Defining operations and in-

terfaces of functions with some granularity allows programmers to compose domain-

specific programs with the functions easily. Although the encapsulated functions en-

tirely express the programs’ functionalities, existing compilers do not fully optimize the

programs because of the coarse granularity.

In software-definedNetworking (SDN), existing compilersmiss opportunities to par-

allelize fine-grained functions. They treat each packet processing table, which includes

both match and action functions, as a single task unit. Therefore, they parallelize the

programs without breaking down thematch and action functions and analyzing depen-

dencies between them.

In the domain of deep learning inference, existing compilers do not fully optimize

fine-grained convolutions of tensor-decomposed deep learning models. They apply ten-

sor decomposition on convolution weights and generate decomposed convolution se-

quences. However, because they only replace convolutions with the corresponding de-

composed convolution sequences, they do not reorder or fuse the decomposed convolu-

tions in a whole model perspective and lose opportunities to minimize memory usage.

viii

This research proposes novel fine-grained compilers using a split-schedule-merge

scheme for network programming and deep learning inference. It presents a new com-

piler named PSDN for network programming, which splits packet processing tables into

match and action functions, schedules them into a pipeline, and merges the functions

to reduce synchronization overheads. Additionally, for deep learning inference, it in-

troduces a new compiler called TeMCO that splits decomposed convolution sequences

into separated convolution layers, schedules the execution order of restore layers, and

merges the decomposed convolution layers with non-decomposed layers. Through the

split-scheme-merge scheme, the compiler can findmore fine-grained parallelism oppor-

tunities in SDN programs and reduce peak memory usage in tensor-decomposed deep

learning models.

The compilers of this work enhance the performance of domain-specific programs

with the split-schedule-merge schemes. Compared to previous approaches, the PSDN

compiler achieves a 12.1% reduction in packet processing time and a 3.5% decrease in

resource utilization of seven network programs. The TeMCO compiler reduces peak

memory usage of internal tensors by 75.7% with 1.08× to 1.70× inference time over-

heads of 10 decomposed models of five deep learning architectures. The compilers of

thiswork can achieve performance gains on their domain-specific programs by utilizing

the split-schedule-merge schemes tailored to their specific domains.

Keywords: Compilers, Networks, Deep Learning

ix

1. Introduction

The demand for high-performance computing in server environments using domain-

specific accelerators is ever-increasing. As applications becomemore complex and data

volumes growexponentially, traditional CPU-based server architectures struggle to keep

pace with the required processing speeds. To address these challenges, server-side ac-

celeration technologies such as smart network interface cards (SmartNICs) and graphic

processing units (GPUs) have emerged as powerful solutions. SmartNICs offload and ac-

celerate network processing tasks, freeing CPU resources and enhancing overall system

efficiency, particularly in network function virtualization (NFV). As another example,

GPUs, with their parallel processing capabilities, are well-suited for compute-intensive

tasks, providing significant performance boosts for workloads such as machine learn-

ing, data analytics, and scientific computing.

Coupled with these hardware advancements, the rise of domain-specific languages

(DSLs) offers tailored support for specific application domains, facilitating more effi-

cient and expressive programming models. DSLs enable developers to write concise

code that directly utilizes specialized accelerators like SmartNICs and GPUs. This syn-

ergy between server-side acceleration technologies and DSLs allows for optimized per-

formance and simplified development workflows, driving innovations across various

fields, from high-frequency trading to deep-learning acceleration. By harnessing the

1

power of SmartNICs and GPUs with DSL support, modern server architectures canmeet

the demands of applications, pushing the boundaries ofwhat is achievable in computing

performance and efficiency.

One of the key points that DSLs can provide efficient and expressive programma-

bility for GPUs and SmartNICs is abstraction. That is, DSLs support programmers to im-

plement their specialized functionalities by granulating them into functions. In the do-

main of Software-Defined Networking (SDN), recent network programming languages

enable programmers to create a program that is composed of multiple functional units

called packet processing tables. In the field of deep learning inference, tensor decom-

position provides methods that decompose a convolution layer into the corresponding

decomposed convolution sequence, regarding the sequence as the representative func-

tional unit of the convolution layer.

Recent advancements in network programming languages enable programmers to

construct network services on programmable network switches equipped with multi-

ple subdivided functional units. The OpenFlow specification [1] initially outlined a pro-

grammable switch architecture that utilizes these multiple units. Subsequently, the P4

programming language [2] introduced a programming model based on these divisions.

Each unit is represented by a packet processing table that includes match and action

functions. The match function evaluates packet header values against the rules in the

control plane, while the action function modifies internal metadata or packet header

values based on the results of this comparison. For instance, programmers can use

these tables to implement features like access control lists (ACLs) [3], Ethernet switching

(layer-2) [4], IP routing (layer-3) [5], and equal-cost multi-path (ECMP) routing [6]. Net-

2

work service providers then integrate these tables into a control flow and deploy the

configured network service on various platforms such as CPUs [7, 8, 9], FPGAs [10], or

specialized packet processors [11, 12, 13].

In deep learning inference, tensor decomposition schemes decompose a convolu-

tion weight into factorized weights and generate a decomposed convolution sequence

to substitute for the original convolution layer. Tensor decomposition [14, 15, 16, 17,

18, 19] is one of model compression schemes such as pruning [20, 21, 22, 23, 24, 25],

quantization [26, 27, 28, 29, 30, 31], and knowledge distilation [32, 33, 34, 35, 36]. Ten-

sor decomposition lowers computational complexity by applying mathematical meth-

ods to break down a convolution into a series of smaller convolutions. This technique

involves factorizing a large-weight tensor from an original convolution into multiple

smaller-weight tensors. As a result, the decomposed convolution sequence of factorized

weight tensors generates an output tensor that closely approximates the output of the

original convolution using the initial weight tensor. Therefore, existing research using

tensor decomposition substitutes the convolution layers in the original model with de-

composed convolution sequences, and they become functional units that represent the

original convolutions.

Even though encapsulated functions express functionalities of domain-specific pro-

grams, existing compilers do not fully optimize the programs due to their coarse granu-

larity. The existing network compilers [37, 38, 39] regard each packet processing table

as a task unit and parallelize programs while match and action functions are aggre-

gated. On the other hand, the existing tensor decomposition methods [14, 15, 16, 17, 18,

19] encapsulate decomposed convolutions into a sequence and do not reorder or fuse

3

the convolutions individually, so they lose opportunities to minimize memory usage by

using internal tensors within the encapsulated decomposed convolutions.

A P4 program consists of match and action functions that read and modify various

packet header values, allowing some parts of these functions to be executed concur-

rently. However, existing compilers [37, 38, 39] treat each packet processing table as

a single task unit and schedule the execution order of the tables while keeping match

and action functions intact. These compilers manage data dependencies between tables

in a coarse-grained manner and assign all the tables to the physical pipeline of packet

processors. As a result, they miss opportunities for fine-grained parallelism between

match and action functions. To fully exploit these opportunities for parallelism, a net-

work compiler should split packet processing tables into individual match and action

functions and strategically schedule these match and action functions, rather than the

whole tables, into the pipeline.

In decomposed convolution sequences in tensor-decomposed deep learningmodels,

tensors within the decomposed convolution sequences have reduced sizes andmemory

usage. However, the existing tensor decomposition methods [14, 15, 16, 17, 18, 19] do

not decapsulate the decomposed convolution sequences and lose opportunities to min-

imize memory usage of whole model inference by using the reduced tensors. These

methods replace convolution layers with the corresponding decomposed convolution

sequences. Inside the sequences, the channel sizes of tensors are reduced with decom-

posed convolutions, but they soon recover to their original sizes. This is because follow-

ing non-decomposed layers, such as pooling or activations, require the tensors with the

original sizes as their inputs, and skip connections store the tensors with the original

4

sizes for the latter layers. Therefore, these methods do not reduce the memory usage

of whole model inference. To minimize the peak memory usage of tensor-decomposed

models, a deep-learning compiler should utilize the reduced tensors not only in the de-

composed convolution sequences but also through the model by replacing the original

tensors with the reduced tensors.

To overcome the coarse granularity of the existing domain-specific compilers, this

work proposes fine-grained compilers using split-schedule-merge schemes that opti-

mize network programs and decomposed deep learning models. A splitting scheme

decomposes the coarse-grained abstracted functional units into fine-grained functions,

analyzing data and control dependencies among them. A scheduling scheme calculates

and estimates computation and memory overheads of the decomposed functions and

schedules the execution order of the functions while preserving the dependencies. Fi-

nally, amerging scheme fuses the functions tominimize synchronization overheads and

function calls. These methods are augmented in the network compiler called PSDN and

the tensor-decomposed deep learning compiler called TeMCO.

This work introduces PSDN, a novel compiler that reorganizes the network function

programswith fine-grained functional units written in the P4 language to reduce packet

processing latency. The PSDN compiler follows split, schedule, and merge schemes

to parallelize network programs with subdivided functional units. First, the compiler

splits packet processing tables into decomposed match and action functions and ana-

lyzes the control and data dependencies between them. The compiler generates a pro-

gram dependence graph (PDG) for the split functions. Next, the compiler estimates the

processing latency for each function based on their execution behavior and strategi-

5

cally schedules these functions within a packet processing pipeline, considering both

PDG and estimated latencies. To minimize the pipeline’s length, the compiler assigns in-

dependent functions wherever possible to the same pipeline stage. In the final phase, to

reduce synchronization overheads among the functions, the compiler merges concur-

rently running functions within the same stage, as well as serially executed functions in

the pipeline. The compiler generates a program in PX language [40], which is suitable

for synthesis into FPGA-based network switches [10].

This work also proposes TeMCO, compiler optimizations for minimizing tensors’

memory usage across tensor decompositions of deep learning inference. The TeMCO

compiler replaces the usage of original internal tensors with reduced tensors by utiliz-

ing a split-schedule-merge scheme. First, the compiler splits a decomposed convolution

sequence into the first, core, and last convolution layers and considers them individual

optimizable units. Second, the compiler schedules the execution order of restore layers

required in skip connections and duplicates the layers at the end of these connections to

substitute original internal tensors with reduced tensors. Finally, the compiler merges

non-decomposed activation layers with decomposed convolution layers. These fused

layers avoid allocating input and output internal tensors and instead operate solelywith

the reduced tensors. As a result, these compiler transformations enable the continuous

and unimpeded use of reduced tensors throughout the inference process, eliminating

the need for tensor restoration.

The compilers of this work utilize split-schedule-merge schemes to improve the per-

formance of domain-specific programs. The compilers split abstracted functional units

of the domain-specific programs into fine-grained functions, exposing optimization op-

6

portunities for parallelization andmemory usage reduction. Then, the compilers sched-

ule the execution orders of fine-grained functions, maintaining the original dependen-

cies and semantics of the programs. Finally, the compilers merge the functional units

with subsequent ones to reduce computation costs and memory overheads. The split-

schedule-merge scheme is shared in the PSDN compiler and the TeMCO compiler, im-

proving the packet processing latency of network programs and the peakmemory usage

of tensor-decomposed deep learning models, respectively.

This work evaluates the PSDN compiler prototype with seven P4 programs [41] and

synthesizes these programs onto the NetFPGA-SUME board [10]. The evaluation ex-

periment analyzes the end-to-end packet processing latency through HDL simulation

and measures the resource consumption of arithmetic logic units (ALUs), registers, and

memories by synthesizing the compiled program into the SmartNIC. In comparison to

prior work [39], the PSDN compiler achieves a 12.1% reduction in packet processing

latency and a 3.5% decrease in resource utilization.

This work evaluates the TeMCO compiler prototype using 10 models from five deep

learning architectures, including image classification with deep learning models [42,

43, 44, 45], as well as image segmentation with UNet [46]. The evaluation experiment

benchmarks these against baseline models decomposed using the Tucker decomposi-

tion [47], with TeMCO’s optimizations applied. The evaluation results demonstrate that

TeMCO reduces the peak memory usage of internal tensors by 75.7% while adding an

inference time overhead of between 1.08× and 1.70× across various batch sizes. Impor-

tantly, the optimizations implemented by TeMCO do not compromise the accuracy of

the decomposed models.

7

Contributions of this work are:

• fine-grained compiler optimizations that decapsulate functional units and reor-

ganize domain-specific programs with split-schedule-merge schemes,

• a newfine-grained network compiler named PSDN that converts a P4 networking

program into a PX program for Xilinx SDNet,

• a splitting scheme for a network program that decouples match and action func-

tions of packet processing tables,

• a scheduling scheme for a network program that schedules the decoupled func-

tions into a pipeline with dependency analysis and clock cycle estimation,

• a merging scheme for a network program that combines the functions in the con-

current and subsequent stages to decrease both latency and resource usage,

• TeMCO’s compiler optimizations that replace the uses of original tensors with re-

duced tensors and reduce peakmemory usage in decomposedmodel’s inferences,

• a splitting scheme for a decomposed deep learning (DL) program that considers

decomposed convolution layers as individual layers,

• a scheduling scheme for a decomposed DL program that schedules the execution

orders of restore layers in skip connections,

• and a merging scheme for a decomposed DL program that fuses the decomposed

convolution layers with non-decomposed activation layers.

8

2. Background & Motivation

This section provides background on network programming and tensor decomposition

in deep learning inference. In the domain of network programming, it describes the con-

cept of software-defined networking (SDN) and introduces the structure of data plane

language. In the field of deep learning inference, it describes tensor decomposition and

the memory usage of tensor-decomposed models. Finally, it investigates the limitations

of existing network compilers and tensor decomposition compilers.

2.1 Network Programming

2.1.1 Software-Defined Networking

Software-defined networking (SDN) decouples the control plane from the data plane

in network switches, enabling them to be both controllable and programmable. Open-

Flow [1] provides APIs to facilitate communication between the control and data planes,

while ONOS [48] offers a control platform.

Figure 2.1 illustrates the packet processing structure of SDN. In the control plane,

network service providers define packet processing rules for how network switches pro-

cess packets based on their headers or metadata. In Figure 2.1, the Controller/OS pro-

vides packet processing rules: forward and broadcast. First, the rule forward checks

9

Network Switch

Controller

/OS

Packet processing rules

dstAddr: 01:23:45:xx, src_port: #1 dst_port: #1

Control plane

Data plane
Give rules

Process packet headers or metadata

Rule Match Action

forward dstAddr 01:23:45:* dst_port #1

broadcast src_port #2 dst_port #4

dstAddr: 00:00:00:xx, src_port: #2 dst_port: #4

Packet #1 Packet #1

Packet #2 Packet #2broadcast

forward

forward

hit

hitmiss

if(!forward.hit){
broadcast; }

P4 program

Figure 2.1: A brief structure of software-defined networking

whether the packer header value dstAddr starts with 01:23:45 andmodifies the meta-

data dst_port to #1. Second, the rule broadcast checks whether the packet header

value src_port is #2 and modifies the metadata dst_port to #4.

In the data plane, a network switch processes packets according to these predefined

rules. In Figure 2.1, the network switch is programmed with a program written in the

P4 language [2]. The rule forward and broadcast are applied to the corresponding

packet processing tables. The example P4 program describes that if the table forward

misses, apply the table broadcast. In the first case, the programmed network switch

processes Packet #1, whose dstAddr starts with 01:23:45. Because the match of the

table forward hits, the switch modifies the metadata dst_port to #1 and passes the ta-

ble broadcast. In the second case, the switch processes Packet #2, whose dstAddr

starts with 00:00:00 and src_port is #2. Because the match of the table forward

misses, the switch applies the table broadcast and modifies the metadata dst_port

to #4 as src_port is #2 and the table broadcastmatches.

10

The development of data plane languages and reconfigurable network switch archi-

tectures has made the data plane programmable. Network service providers can now

program switches to support newly defined protocols or executemultiple network func-

tions across different protocols using data plane languages rather than relying solely on

built-in functions. One popular data plane language is P4 [2]. For instance, in-band Net-

work Telemetry (INT) [49], load balancing [50] and in-network computation [51] have

all been implemented using the P4 language. In Figure 2.1, the network switch can be

programmed with the P4 program to conduct designated network packet processing.

2.1.2 Structure of P4 Language

P4 [2] is a domain-specific language designed for packet processing. While this work

focuses on the P4 language, other languages, such as Huawei’s Protocol-Oblivious For-
warding [52, 53], share a similar structure. A data plane program in these languages

comprises three main components: a parser, a table pipeline, and a deparser. The

parser accepts packets and generates packet headers and metadata according to net-

work protocols. Using the parsed headers and metadata, the table pipeline modifies

themwith tables applying rules defined in the control plane. Finally, the deparser pack-

ages all the information and emits the modified packets.

Figure 2.2 illustrates a segment of the simplified P4 grammar related to the table

pipeline. To simplify the example, this paper omits the definitions of headers, meta-

data, the parser, and the deparser. The table pipeline includes action functions, table

declarations, an apply function, and extern functions. The extern functions are imple-

mented outside of the program, such as Verilog modules. Because the P4 program does

11

table_pipeline := control table_pipeline_name(...) { args := arg, args

action_decl_list := arg

table_decl_list arg := type id

extern_decl_list key_list := key_list; key

apply { stmt_list; } } := key

action_decl_list := action_decl_list action_decl key := id : match_type

:= action_decl match_type := exact
action_decl := action action_name(args) { stmt_list; } := lpm

table_decl_list := table_decl_list table_decl := ternary
:= table_decl id := packet header

table_decl := table table_name { or metadata field

key = { key_list; } expr_list := expr_list, expr

actions = { action_name_list; } := expr

default_action = action_name; } expr := bool

action_name_list := action_name_list; action_name := int

:= action_name := id

extern_decl := extern extern_name(args); := (expr)

stmt_list := stmt_list; stmt := lop expr

:= stmt := expr op expr

stmt := id = expr := table_name\

:= if(expr) {stmt_list;} .apply().hit
:= if(expr) {stmt_list;} else {stmt_list;}

:= table_name.apply()
:= action_name(expr_list)

:= extern_name(expr_list)

Figure 2.2: The table pipeline’s simplified grammar in the P4 language

12

not describe the implementation details of the extern functions, these functions are con-

sidered as a black box. On the other hand, the action functions are composed of various

statements such as assignments, if conditions, and function calls. These functions mod-

ify packet header values or metadata or call other functions or tables.

The table declaration consists of a list of keys and actions defined within the table

pipeline. These keys include the IDs of match variables, such as packet headers ormeta-

data, and the types of matches. The types of matches include exact, lpm, and ternary.

The exactmatch checks whether the values are the same, the lpm finds the longest pre-

fix matches, and the ternarymatch finds the most similar match, including don’t care

term. The tables can be called using a applymethod, and apply().hit returns the re-

sult of the table matches. The table compares the keys with rules from the control plane

and conducts the designated action of the matched rule.

Figure 2.3 illustrates an example P4 pseudoprogram in Figure 2.1. The table pipeline

in the example includes action definitions, tables, and an apply function. An action

definition is a function that modifies packet headers (hdr) or metadata (meta). Some

actions, such as set_output_port and set_broadcast, require arguments. These ar-

gument values are in packet processing rules provided by the control plane. Addition-

ally, actions can modify packet headers or metadata either directly or by using external

functions. A table definition includes keys consisting of packet headers or metadata for

matches and actions that invoke actions when the keys are matched. The apply func-

tion serves as the main function, outlining the control flow. It can include conditional

branches like if statements, but the P4 language does not support loops or iterations.

Therefore, the P4 program results in an acyclic control flow for the table pipeline.

13

1 parser Parser(packet_in packet, out headers hdr,
2 inout metadata meta) {...}
3
4 control TablePipeline(inout headers hdr, inout metadata meta) {
5 action set_output_port(port_t port) {
6 meta.dst_port = port;
7 }
8 table forward {
9 key = { hdr.ethernet.dstAddr: lpm; }
10 actions = {
11 set_output_port;
12 NoAction;
13 }
14 default_action = NoAction;
15 }
16 action set_broadcast(port_t port) {
17 meta.dst_port = port;
18 }
19 table broadcast {
20 key = { meta.src_port: exact; }
21 actions = {
22 set_broadcast;
23 NoAction;
24 }
25 default_action = NoAction;
26 }
27 apply {
28 // forward based on destination Ethernet address
29 if (!forward.apply().hit) {
30 // miss, then broadcast
31 broadcast.apply();
32 }
33 }
34 }
35
36 control Deparser(packet_out packet, in headers hdr) {...}
37
38 Switch(Parser(), TablePipeline(), Deparser()) main;

Figure 2.3: An P4 program example

14

0% 20% 40% 60% 80% 100%

Learning

Switch

INT

TCP Monitor

Switch Calc.

Parser Table Pipeline Deparser

Figure 2.4: The latency percentage of a parser, a table pipeline, and a deparser

In the P4 program shown in Figure 2.3, the table forward uses the Ethernet desti-

nation address (hdr.ethernet.dstAddr) with the lpm match option as a key (Line 9)

and includes two actions: set_output_port and NoAction (Lines 10 to 13). When the

control plane provides a rule with the Ethernet destination address (01:23:45:xx), the

network switch compares this addresswith the destination address of incoming packets.

If the addresses match, the switch sets the destination port number (meta.dst_port) to

the value #1 specified by the control plane using the set_output_port action. If the ad-

dresses do not match, the table forward passes the packet by default action NoAction.

In this case, the table broadcast is applied, as defined in the apply function (Lines 27

to 33). The table broadcast compares the source port number meta.src_portwith the

rule and modifies meta.dst_port to #4 if the value exactly matches.

Although a data plane program includes a parser, a table pipeline, and a deparser,

this work concentrates on optimizing the table pipeline, as it consumes the majority of

the execution time in the data plane. Figure 2.4 shows the latency percentage of four

P4 programs in HDL simulations. The latency of table pipelines takes 49.4% of overall

15

latency in geomean. The parser extracts packets with predefined protocols, and the de-

parser packages the packets with the processed data. Compared to the parser and the

deparser, the table pipeline incurs overheads due to its reading and writing of packet

header fields and metadata. Moreover, previous research [54] shows that the latency

of the table pipeline increases sharply as the number of tables grows. Therefore, this

work aims to optimize the table pipeline to reduce the packet processing latency in pro-

grammable switches.

2.1.3 Limitations of Existing Network Compilers

Although P4 [2] supports programmability and flexibility of network switches, current

P4 compilers [11, 37, 38, 39] do not fully optimize network programs due to the lack of

fine-grained dependency analysis. The existing compilers [11, 38] detect data dependen-

cies in the case that a table modifies a packet header ormetadata field and the following

table uses this field in a match (match dependency) or alters it in an action (action de-

pendency). However, these approaches only focus on table-level data dependencies,

resulting in coarse-grained pipeline scheduling that misses potential parallelism oppor-

tunities among match and action operations.

Table-level dependency analysis treats a packet processing table as an atomic unit,

overlooking the finer details of matches and actions. Figure 2.5 illustrates the definition

of use and def within a table. Althoughmatch keys and actions have their own uses and

defs, existing compilers analyze these only at the table level to identify data dependen-

cies. To fully utilize parallelism opportunities at a finer granularity, it is necessary to

decouple matches and actions from the tables in data dependency analysis.

16

U(key) := { id }

D(key) := ∅
U(key_list) := U(key_list) ∪ U(key)

:= U(key)

D(key_list) := D(key_list) ∪ D(key)

:= D(key)

U(stmt) := { id ∣ id ∈ expr }

:= { id ∣ id ∈ expr } ∪ U(stmt_list)

D(stmt) := { id }

:= D(stmt_list)

U(stmt_list) := U(stmt_list) ∪ (U(stmt) ∖ D(stmt_list))

D(stmt_list) := D(stmt_list) ∪ D(stmt)

U(action_decl) := U(stmt_list)

D(action_decl) := D(stmt_list)

U(action_name) := U(action_decl | action_decl.action_name = action_name)

D(action_name) := D(action_decl | action_decl.action_name = action_name)

U(action_name_list) := U(action_name_list) ∪ U(action_name)

D(action_name_list) := D(action_name_list) ∪ D(action_name)

U(table_decl) := U(key_list) ∪ U(action_name_list)

D(table_decl) := D(action_name_list)

Figure 2.5: A P4 table’s use (U) and def (D)

While decomposing tables into match functions and action functions can uncover

additional parallelism opportunities, it may also lead to increased computation and

area overheads in the synthesized hardware. Existing compilers [37, 39] allocate tables

to hardware pipeline stages, synthesizing control flows at the table level. Combining

match and action functions within a single module can reduce synchronization over-

heads because the compiler does not have to place synchronization barriers for every

function but for tables.

17

However, a fine-grained compiler scheme that separatesmatch and action functions

into different pipeline stagesmay result in an increasednumber of stages andmore com-

plex control flows. This complexity can lead to unnecessary synchronization, potentially

increasing the overall execution time despite shorter individual pipeline stages. There-

fore, it is essential for a P4 compiler to simplify the control flows by pipeline scheduling

and to reduce the number of pipeline stages by merging functions.

2.2 Tensor Decomposition in Deep Learning

2.2.1 Tensor Decomposition Methods

Tensor decomposition methods decompose weight tensors into core weights and low-

ranked factor matrices. Tensor decomposition types include Canonical Polyadic De-

composition (CP) [55], Tucker Decomposition [15, 47], and Tensor Train Decomposition

(TT) [17, 56]. Figure 2.6 depicts how different tensor decompositions break down a con-

volution weight tensor into smaller tensors. There are two 2D factor matrices: first and

last. The width and the height of the first factor matrix are the channel size of the input

(𝐶) and reduced channel (𝐶1), and the width and the height of the last factor matrix are

reduced channel (𝐶2) and the channel size of the output (𝐶′). The core weights have

lower dimensions or reduced channels than the original weight tensor. The shape of

the core weights is different depending on the tensor decomposition methods, but the

methods in Figure 2.6 all have the first and the last 2D factor matrices. The following

figures in this paper will use a core weight of Tucker decomposition (Figure 2.6c) as a

base example for simplicity, but the core weights can be replaced depending on the de-

18

C′

C K

K

…

C

C1

First

C2

C′

Last×

C1

K
K

C2

Core1 Core2× ×

(a) Original convolution weight (b) CP decomposition

C

C1

First

C2

C′

Last× Core ×

K

K
…C2

C1

C

C1

First

C2

C′

Last× Core1 ×

K

C3

C1

K

C2
C3

Core2 ×

(c) Tucker decomposition (d) TT decomposition

Figure 2.6: Tensor decomposition methods

composition types. Multiplication of the core weights and the 2D factor matrices is an

approximation of the original weight tensor.

In tensor decomposition, selecting appropriate ranks influences the quality of the

decomposition and its effectiveness in compressing tensors. In Figure 2.6, the channel

sizes 𝐶1 to 𝐶3 represent ranks of the decomposition. The ranks of the core weights and

the factor matrices determine the level of approximation achieved and the amount of

compression attained. Generally, higher ranks result in better approximation accuracy

but require more computational and spatial resources. Conversely, lower ranks may

lead to more significant compression but at the expense of increased approximation

error. Retraining of the decomposed model compensates for approximation accuracy.

With the factor matrices and the core tensor, tensor decomposition can construct a

decomposed convolution sequence that approximates the computation of a convolution

19

C

W

C′

C
K

K

…

C′

H′

W′

Input

conv

Output

H

(a) Original convolution layer

C

H

W

C2

C1

K

K

…

C′

H′

W′

Input

Core conv

Output

C

C1

First
conv

C1

W

C2

H′

W′

Reduced2

C2

C′
H

Reduced1

Last
conv

(b) Decomposed convolution sequence

Figure 2.7: Tensor decomposition on a convolution layer

layer. Figure 2.7 describes an original convolution layer and the corresponding decom-

posed convolution sequence. In the two factor matrices in Figure 2.6, the First matrix

and the Last matrix become weights of 1 × 1 convolution layers named First conv and

Last conv in Figure 2.7b, respectively. The core convolution layer(s) (Core conv in Fig-

ure 2.7b) has the decomposed core weight(s) (Core in Figure 2.6). Note that while the

core convolutions vary across different types of tensor decomposition, the first and fi-

nal convolution layers remain consistent among these methods.

The first convolution layer reduces an input channel size (𝐶) to a reduced channel

size (𝐶1). The core convolution layer performs a reduced-sized convolution, accepting

the reduced input channel size (𝐶1) and generating a reduced output channel size (𝐶2).

Finally, the last convolution layer restores the reduced channel size (𝐶2) to an output

20

channel size (𝐶′). In the rest of the paper, this work will refer to the first convolution

layer as fconv, the last convolution layer as lconv, and the internal tensors within a de-

composed convolution sequence (Reduced1 and Reduced2 in Figure 2.7b), of which the

channel sizes are reduced, as reduced tensors.

2.2.2 Number of Operations of Decomposed Convolution Sequences

This workmeasures the reduction of the number of operations achieved through tensor

decomposition. By decomposing tensors, tensor decomposition effectively reduces the

computational complexity of convolution operations, primarily by reducing the channel

size of the core convolution layer. The original convolution layer in Figure 2.7a requires

the number of multiplication operations described in Equation (2.1).

𝐶𝐶′𝐾2𝐻′𝑊′ (2.1)

In Equation (2.1), 𝐾2 represents the size of the convolution kernel, 𝐶 denotes the

number of input channels, and 𝐶′, 𝐻′, and 𝑊′ represent the number of output chan-

nels, height, and width of the output tensor, respectively. The height and width of the

output tensor (𝐻′ and𝑊′) are calculated based on the input dimensions (𝐻 and𝑊) and

the size of the convolution kernel (𝐾), where 𝐻′ = 𝐻 − 𝐾 + 1 and 𝑊′ = 𝑊 − 𝐾 + 1.

The decomposed convolution sequence in Figure 2.7b requires the number of mul-

tiplication operations described in Equation (2.2).

𝐶𝐶1𝐻𝑊 + 𝐶1𝐶2𝐾2𝐻′𝑊′ + 𝐶2𝐶′𝐻′𝑊′ (2.2)

21

In Equation (2.2), 𝐶 represents the number of input channels, 𝐶1, 𝐶2, and 𝐶′ de-

note the number of channels after each decomposition step, and 𝐻 and 𝑊 represent

the height and width of the input tensor, respectively. The dimensions 𝐻′ and 𝑊′

of the output tensor are calculated similarly to the original convolution layer, where

𝐻′ = 𝐻 − 𝐾 + 1 and 𝑊′ = 𝑊 − 𝐾 + 1. Comparing Equation (2.1) with Equation (2.2),

the decomposed convolution sequence involves fewer multiplication operations due to

the reduction in the number of input and output channels after each decomposition

step. Assuming that the Tucker decomposition reduces channel sizes with decomposi-

tion ratio 𝑟, the reduced channel sizes 𝐶1 and 𝐶2 follow these equations: 𝐶1 = 𝑟𝐶 and

𝐶2 = 𝑟𝐶′. Then, Equation (2.2) can be rewritten as follows in Equation (2.3):

𝑟𝐶2𝐻𝑊 + 𝑟2𝐶𝐶′𝐾2𝐻′𝑊′ + 𝑟𝐶′2𝐻′𝑊′ (2.3)

This example shows that tensor decomposition can reduce the number of opera-

tions. Previous work [15] proposes a tensor decomposition scheme that finds decompo-

sition ratios (i.e., ranks) of convolution layers to reduce FLOPS and inference time of a

model. However, the scheme fails to reduce memory usage of the model inference. The

following section describes the memory usage analysis of tensor-decomposed models

and why the previous scheme fails to reduce the memory usage.

2.2.3 Memory Usage of Decomposed Convolution Sequences

This work analyzes the peak memory usage of models decomposed by tensor decom-

position. To inspect peak memory usage, we analyze a sequence of two consecutive

22

C
′

H
′

W
′

O
u
tp

u
t1

In
p
u
t2

C
′

W
′

K
′K
′

…

co
n
v
2

C
′′

O
u
tp

u
t2

H
′′W
′′

R
eL

U

H
′

W
′

C

W

C
′

C
K

K

…

In
p
u
t1

co
n
v
1

H

C
′

C
′′

H
′

(a
)O

ri
gi
na

lc
on

vo
lu
tio

n
la
ye
rs

w
ith

an
ac
tiv

at
io
n
la
ye
r

K

C
2

C
1

K

…

C
o
re

 c
o
n

v
1

C
′

H
′

W
′

O
u

tp
u

t1

C

C
1

F
ir

st

co
n

v
1

C
1

W

H

C

H

W

In
p

u
t1

C
2H
′

W
′

L
as

t

co
n

v
1

C
2

C
′

In
p

u
t2

C
′

W
′

H
′

C
4

C
3

K
′K
′

…

C
o
re

 c
o
n

v
2

W
′

C
3

R
ed

u
ce

d
3

C
′

C
3

H
′

C
4

H
′′

R
ed

u
ce

d
4

C
4

C
′′

W
′′

C
′′

O
u

tp
u

t2

H
′′

W
′′

R
eL

U

H
′

W
′

R
ed

u
ce

d
1

F
ir

st

co
n

v
2

L
as

t

co
n

v
2

R
ed

u
ce

d
2

(b
)T

w
o
de

co
m
po

se
d
co
nv

ol
ut
io
n
se
qu

en
ce
sw

ith
an

ac
tiv

at
io
n
la
ye
r

K

C
2

C
1

K

…

C
o
re

 c
o
n

v
1

C

C
1

F
ir

st

co
n

v
1

C
1

W

H

C

H

W

In
p

u
t1

C
2H
′

W
′

C
4

C
3

K
′K
′

…

C
o
re

 c
o
n

v
2

W
′

R
ed

u
ce

d
3

C
3

H
′

C
4

H
′′

R
ed

u
ce

d
4

C
4

C
′′

W
′′

C
′′

O
u

tp
u

t2

H
′′

W
′′

R
ed

u
ce

d
1

L
as

t

co
n

v
2

R
ed

u
ce

d
2

F
u

se
d

 L
ay

er

C
3

C
2

W
′

H
′

(c
)O

pt
im

iz
ed

co
nv

ol
ut
io
n
se
qu

en
ce
sb

y
Te
M
CO

Fi
gu

re
2.
8:

Te
ns
or

de
co
m
po

si
tio

n
on

a
co
nv

ol
ut
io
n
se
qu

en
ce

23

convolution layers and one activation layer between them rather than a single convo-

lution layer. In Figure 2.8, we observe two convolution layers and one activation layer

between them, as well as two sequences of decomposed convolutions with an activation

layer. The peak memory usage of a model is determined by the memory requirements

of two key types of tensors: weight tensors (parameters, filters, and kernels) and internal

tensors (input and output tensors of layers, also known as feature maps). When mea-

suring the peak memory usage influenced by internal tensors, it is essential to include

activation layers like ReLU followed by convolution layers for an accurate assessment

of peak memory usage.

In the context of model inference, deep learning frameworks, such as PyTorch [57]

and TensorFlow [58], adopt a strategy of loading complete weight tensors before execut-

ing the inference. This approach involves initializing and storing all the weight tensors

associated with the model’s convolution layers. In Figure 2.8a, the size of the weight

tensors for the convolution layers is outlined by Equation (2.4):

𝐶𝐶′𝐾2 + 𝐶′𝐶″𝐾 ′2 (2.4)

In Figure 2.8b, the size of the weight tensors in the decomposed convolution se-

quences is described by Equation (2.5):

𝐶𝐶1 + 𝐶1𝐶2𝐾2 + 𝐶2𝐶′ + 𝐶′𝐶3 + 𝐶3𝐶4𝐾2 + 𝐶4𝐶″ (2.5)

If the tensor decomposition reduces channel sizes with decomposition ratio 𝑟, the

reduced channel sizes 𝐶1, 𝐶2, 𝐶3 and 𝐶4 of reduced tensors follow these equations:

24

𝐶1 = 𝑟𝐶, 𝐶2 = 𝐶3 = 𝑟𝐶′ and 𝐶4 = 𝑟𝐶″. Then, Equation (2.5) can be rewritten as

follows in Equation (2.6):

𝑟𝐶2 + 𝑟2𝐶𝐶′𝐾2 + 2𝑟𝐶′2 + 𝑟2𝐶′𝐶″𝐾2 + 𝑟𝐶″2 (2.6)

While tensor decomposition effectively reduces the memory usage of weight ten-

sors, it does not directly impact the memory usage of internal tensors allocated by deep

learning frameworks. These frameworks manage memory allocation and deallocation

for internal tensors dynamically. This dynamic memory management strategy involves

allocating memory only for the internal tensors required by the currently active layer

during model inference. Additionally, memory allocated to tensors that are no longer

needed for subsequent inference tasks is promptly released.

In Figure 2.8, this work analyzes the peakmemory usage of internal tensors by com-

puting themaximum size of input and output tensors for each layer. This approach pro-

vides insights into thememory requirements imposed by the internal tensorswithin the

model architecture. For the case of the two convolution layers illustrated in Figure 2.8a,

the peak memory usage related to internal tensors is quantified using Equation (2.7):

𝑀𝐴𝑋(𝐶𝐻𝑊 + 𝐶′𝐻′𝑊′, 2𝐶′𝐻′𝑊′, 𝐶′𝐻′𝑊′ + 𝐶″𝐻″𝑊″) (2.7)

Assuming that 𝐻 ≈ 𝐻′, 𝑊 ≈ 𝑊′ and 𝐶 ≈ 𝐶′ ≈ 𝐶″, Equation (2.7) is reduced as

follows in Equation (2.8):

2𝐶𝐻𝑊 (2.8)

25

Similar to calculating the peak memory usage of the internal tensors in the con-

volution sequences associated with an activation layer, this work calculates the peak

memory usage of the internal tensors in Figure 2.8b as follows in Equation (2.9):

𝑀𝐴𝑋(𝐶𝐻𝑊 + 𝐶1𝐻𝑊, 𝐶1𝐻𝑊 + 𝐶2𝐻′𝑊′,

𝐶2𝐻′𝑊′ + 𝐶′𝐻′𝑊′, 2𝐶′𝐻′𝑊′, 𝐶′𝐻′𝑊′ + 𝐶3𝐻′𝑊′,

𝐶3𝐻′𝑊′ + 𝐶4𝐻″𝑊″, 𝐶4𝐻″𝑊″ + 𝐶″𝐻″𝑊″)

(2.9)

The channel sizes of the reduced tensors (denoted as 𝐶1 to 𝐶4) are smaller com-

pared to those of the internal tensors (denoted as 𝐶 to 𝐶″). This is because tensor de-

composition reduces the channel sizes of convolution kernels. Then, thiswork simplifies

Equation (2.9) as follows in Equation (2.10):

2𝐶′𝐻′𝑊′ (2.10)

Here, the resulting size calculated from Equation (2.10) closely resembles the ap-

proximate size calculated using Equation (2.8). The memory usage of the internal ten-

sors within the activation layer has a significant influence on the overall peak memory

usage of the decomposed convolution sequences. Therefore, it is necessary to hide the

allocation of internal tensors within the activation layer to reduce peak memory usage.

This analysis highlights that while tensor decomposition reduces thememory usage

of weight tensors, it does not directly reduce the peak memory usage associated with

internal tensors. The dominance of internal tensor memory usage within the activation

26

0

400

800

1200

1600

2000
In

te
rn

al
 T

en
so

r
(M

B
)

Layers

Original Decomposed TeMCO

(a) UNet

0

20

40

60

80

100

120

In
te

rn
al

 T
en

so
r

(M
B

)

Layers

Original

Decomposed

TeMCO

(b) VGG-16

Figure 2.9: Memory usage of internal tensors

layers underscores the challenge of further reducing peakmemory usage solely through

decompositionmethods. Consequently, achieving comprehensive memory reduction in

tensor-decomposed models requires complementary strategies beyond tensor decom-

position. The following section examines the actual memory usage of decomposed deep

learning models and discusses the limitations of previous work.

27

2.2.4 Limitations of Existing Tensor Decompositions

The existing tensor decomposition schemes [14, 15, 16, 17, 18] miss the opportunity to

further reduce peak memory usage of internal tensors despite tensor decomposition

using less memory for decomposed convolution sequences. To illustrate the impact of

skip connections and activation layers, this work compares the memory usage of inter-

nal tensors in the original and decomposed models using Tucker decomposition [47].

Figure 2.9 show the memory usage of internal tensors during 4-batch inference with

UNet [46] and VGG-16 [43] on RTX 4090.

In Figure 2.9a, skip connections account for 76.2% of the peak memory usage by in-

ternal tensors in the tensor-decomposed model of UNet. The UNet architecture features

an hourglass shape with skip connections horizontally linking the downsampling and

upsampling blocks. During decomposedmodel inference, the downsampling blocks’ de-

composed convolution sequences restore reduced tensors to their original sizes, while

the original tensors remain in the skip connections until the upsampling blocks use

them. As a result, memory usage by skip connections in the decomposed model is com-

parable to that of the original model.

Conversely, in Figure 2.9b, the peak memory usage by internal tensors occurs dur-

ing the computation of non-decomposed activation layers in VGG-16. VGG has a lin-

ear sequence of convolution, activation, and pooling layers. In the decomposed model

of VGG-16, decomposed convolution sequences reduce the internal tensor sizes during

core convolutions. However, these sequences soon restore the reduced tensors to their

original sizes to be processed in non-decomposed activation layers. Thus, the peakmem-

28

ory usage caused by non-decomposed layers in the decomposed model is similar to that

in the original model.

To address this issue, a new compiler optimization is needed to decapsulate the

decomposed convolution sequences and to transform the decomposed deep-learning

model to use only reduced tensors, as shown in Figure 2.8c. Figure 2.8c displays the op-

timized convolution sequence comprising reduced tensors, achieved by fusing lconv1,

ReLU and fconv2, and removing Output1 and Input2 from Figure 2.8b. Since Figure 2.8b

did not include the skip connections, the compiler optimization schemes require more

sophisticated steps to handle complex data flows with decapsulated convolutions.

2.3 Motivation

To overcome the limitations of existing domain-specific compilers for network program-

ming and tensor decomposition, thiswork proposes compilers that operate infiner gran-

ularity. These compilers decapsulate coarse-grained functional units into finer-grained

functions, analyze their data and control dependencies, optimize programs by schedul-

ing the functions, and fuse the functions to minimize synchronization overheads. This

split-schedule-merge concept is shared in both the proposed network programming com-

piler and tensor decomposition compiler, decomposing coarse-grained functional units

into finer-grained functions, scheduling the functions preserving dependencies, and

merging the functions to reduce computation and memory overheads.

This work proposes PSDN, a compiler utilizing the split-schedule-merge scheme for

network function programs written in P4. To overcome the limitations of existing com-

pilers that optimize programs at the table level, PSDN splits packet processing tables into

29

matches and actions and schedules and merges the split functions of the programs. The

PSDN compiler consists of table decomposition and dependency analysis as a splitting

scheme, cycle estimation and pipeline scheduling as a scheduling scheme, and function

fusion and code generation as a merging scheme.

The PSDN compiler decouples match and action functions and analyzes the con-

trol and data dependencies among them. It then estimates the processing latency of

each function based on their execution behaviors and allocates the functions efficiently

in a pipeline while respecting these dependencies and latency estimations. To mini-

mize pipeline length, the compiler places independent functions into the same pipeline

stage. Finally, the PSDN compiler generates a program written in the PX language [40],

which can be synthesized into FPGA-based network switches [10]. To simplify the result-

ing hardware and reduce synchronization overheads, the compiler also fuses concur-

rent functions within the same pipeline stage and consecutive functions in the pipeline.

With these optimizations, the PSDN compiler reduces the latency of packet processing

by 12.1% and utilization of LUTs, registers, and memory by 3.5% in geomean.

This work also proposes the TeMCO compiler that utilizes the split-schedule-merge

scheme for the deep learning models with tensor decomposition applied. TeMCO splits

fconv and lconv from decomposed convolution sequences, schedules the execution or-

ders of restore layers in skip connections and copies them, and merges lconv and fconv

with non-decomposed activation layers in the decomposed models. The TeMCO com-

piler consists of inlining as a splitting scheme, skip connection optimization as a schedul-

ing scheme, and activation layer fusion and concatenation layer transformation as a

merging scheme.

30

The TeMCO compiler inlines the decomposed convolution layers and analyzes the

dependencies of the layers in a model. It then finds skip connections, identifies reduced

tensors of skip connections, copies required layers that restore the original tensors of

the skip connections, inserts the copied layers into the end of skip connections, and re-

places the original tensors with the reduced tensors. To avoid allocation of the original

tensors in non-decomposed activation layers, the TeMCO compiler fuses the activation

layer with lconv and fconv, which are alongside the activation layer. Finally, TeMCO

transforms concatenation layers that are placed at the end of skip connections to ap-

ply activation layer fusion fully. With these optimizations, TeMCO reduces the memory

usage of internal tensors by 75.7% of tensor-decomposed models, with 1.08× to 1.70×

overheads of inference time in 4 to 32 batch sizes. Furthermore, the compiler optimiza-

tions of TeMCO do not reduce the accuracy of the decomposed models.

31

3. Split, Schedule, Merge for Network Programs

This chapter presents an overview of a split-schedule-merge scheme of the PSDN com-

piler for network programs. The compiler 1) splits match and action functions in packet

processing tables, analyzing data and control dependencies and generates a program

dependency graph, 2) schedules execution orders of functions into the pipeline regard-

ing the dependencies and estimated clock cycles, and 3) merges concurrent and sub-

sequent action functions and finally generates a PX program which is synthesizable to

FPGA-based SmartNICs. The PSDN compiler reduces latency and resource utilization of

network function programs with these optimizations.

3.1 Overview

Figure 3.1 provides an overview of the PSDN compiler. The frontend of the PSDN com-

piler is the p4c open-source compiler [59], which generates P4 intermediate representa-

tion (IR). Based on the P4 IR, the PSDN compiler decomposes P4 tables into match func-

tions and action functions (Section 3.2.1). It then analyzes data and control dependen-

cies among the functions and combines them into a program dependence graph (PDG),

with prefetching of read-only functions (Section 3.2.2). After generating the PDG, the

compiler performs cycle estimation and schedules the order of the function executions

into a pipeline (Section 3.3). To minimize pipeline length, it allocates independent func-

32

:p4c compilerP4 program (.p4)

P4 IR

Table Decomposition

t1

t2

Decomposed functions

t1.action

t1.match

t2.action

t2.matchif

frontend Dependency Analysis

Pipeline Scheduling

Cycle Estimation

Scheduling Algorithm

Function Fusion Code Generation

PX program (.sdnet)

:PSDN backend

SDNet compilerVivado & P4-NetFPGA
Verilog

program (.vp)

NetFPGA-SUME

action

(t1&if→t2)

if

t1.actiont1.match t2.action

t2.match

t1.match

t2.match

if

PDG

t1.action

t1.match

t2.action

t2.match

Figure 3.1: The PSDN compiler

tions to the same pipeline stage. Finally, the compiler performs function fusion, merging

adjacent action functions (Section 3.4).

The role of this compiler is to translate a P4 IR to a PX programand optimize it. Other

parts of the compilation process utilize the p4c compiler as the frontend and the SD-

Net compiler [60] as the backend. The PSDN compiler is implemented on top of the p4c

compiler, with backend passes developed to translate P4 IR to an optimized PX program.

Once the PSDN compiler generates the optimized PX program, the SDNet compiler trans-

33

if (!forward.apply().hit){

 broadcast.apply();

}

f_result = forward.match();

forward.action(f_result);

if (!f_result.hit) {

 b_result = broadcast.match();

 broadcast.action(b_result);

}

Figure 3.2: Table decomposition example of Lines 27 to 33 in Figure 2.3

lates it into a protected (encrypted) Verilog program, concealing the implementations of

translated modules. Since the SDNet compiler hides the details of the translated mod-

ules, RTL (register transfer-level) optimizations are impossible. Currently, this work

follows the workflow of P4-NetFPGA-SUME [41], which includes the SDNet compiler.

Still, future work aims to develop an end-to-end compiler for high-level synthesis and

to overcome pipeline limitations. The Verilog programs are synthesized using Vivado

2018.2 and tested on the NetFPGA-SUME board [10]. The evaluation infrastructure is

detailed in Section 5.1.

3.2 Splitting Scheme

3.2.1 Table Decomposition

The PSDN compiler employs a table decomposition scheme that splits match func-

tions and action functions for P4 tables. Figure 3.2 illustrates the decomposition of the

table pipeline (Lines 27 to 33) from Figure 2.3. Initially, the PSDN compiler decom-

poses forward.apply() into forward.match() and forward.action(). The trans-

formed code calls forward.match() and stores the return value in f_result. The

forward.action() function then performs actions using f_result as an argument.

34

1 typedef enum { exact, lpm, ternary } LookupType;
2 typedef struct { bool hit; int action_id;
3 int* args; } Result;
4
5 Result ForwardTable::match(LookupType type, int* keys) {
6 Result result = PERFORM_MATCH(type, keys);
7 return result;
8 }
9
10 void ForwardTable::action(Result result) {
11 if(result.hit) {
12 switch(result.action_id){
13 //case 1: set_output_port(), default: NoAction()
14 case 1: meta.dst_port = result.args[0]; break;
15 default: break;
16 }
17 }
18 }

Figure 3.3: Match and action functions of Table forward in Figure 2.3

The if statement requires the hit-or-miss result of the table forward as the condition

is !f_result.hit. The table decomposition also decomposes the table broadcast into

broadcast.match() and broadcast.action().

The table decomposition decouples match and action functions into separated in-

struction blocks. Figure 3.3 lists the decoupled match and action functions of the ta-

ble forward from Figure 2.3. For simplicity, this work uses C++ semantics to describe

the match and action functions. The match function handles the key match operation

of the P4 table, receiving key variables as input, comparing with packet processing

rules in the control plane, and returning a hit-or-miss result, a selected action num-

ber, and arguments. The action function determines whether to execute the actions

based on the match result and performs the specified action with the given arguments.

Note that the table decomposition inlines each action function into the switch cases of

35

f_result = forward.match();

forward.action(f_result);

if (!f_result.hit) {

 b_result = broadcast.match();

 broadcast.action(b_result);

}

f_result = forward.match();

b_result = broadcast.match();

forward.action(f_result);

if (!f_result.hit) {

 broadcast.action(b_result);

}

Figure 3.4: Code motion on match functions

ForwardTable::action (Line 14 in Figure 3.3). By applying the table decomposition,

these match and action functions become separated instruction blocks.

P4 semantics allow direct instructions in the table pipeline, meaning the P4 apply

block can contain conditional branches (e.g., Line 29 in Figure 2.3) or assignment state-

ments. To simplify dependency analysis, the PSDN compiler translates these instruc-

tions into separate instruction blocks. Finally, the table decomposition generates in-

struction blocks with matches, actions, and condition instructions.

3.2.2 Dependency Analysis

The PSDN compiler’s dependency analysis follows traditional data and control depen-

dency analysis methods [61, 62]. It identifies data dependencies using the use and def

information illustrated in Figure 2.5. The compiler constructs a program dependence

graph (PDG) by combining data and control dependencies. Before constructing the PDG,

the compiler redirects control dependencies from the table to the action function to

prefetch read-only match functions.

The PSDN compiler conducts code motion on read-only functions and prefetches

them. Match functions and certain extern functions are stateless, meaning that they

36

if(f_result.hit) {

 switch(f_result.action_id) {

 case 1: meta.dst_port =

 f_result.args[0]; break;

 default: break;

 }

}

f_keys = [hdr.ethernet.dstAddr];

f_result = PERFORM_MATCH(

 LookupType.exact, f_keys);

forward.match

if (!f_result.hit)

broadcast.match

b_keys = [meta.src_port];

b_result = PERFORM_MATCH(

 LookupType.exact, b_keys);

if(b_result.hit) {

 switch(b_result.action_id) {

 case 1: meta.dst_port =

 b_result.args[0]; break;

 default: break;

 }

}

forward.action broadcast.action

control dependency

f_result.hit

f_result b_result

meta.dst_port

Figure 3.5: Program dependence graph

neither modify the program’s state nor depend on the control flow. Figure 3.4 demon-

strates how the PSDN compiler handles stateless functions. The match function only

compares keys with control plane rules, reading variables without changing the pro-

gram’s state. Similarly, some extern functions like register-read and hash operate in

the same way. The PSDN compiler moves condition-invariant function calls outside the

conditional branches for stateless functions, thereby combining the control dependency

with the action function. The prefetching enhances parallelization opportunities, as

seen with the match functions of forward and broadcast in Figure 3.4 and reduces the

execution time after the if statement.

Figure 3.5 presents the PDG for the example code in Figure 2.3. Thematch and action

functions can have data dependencies. The forward and broadcast action functions

37

have a data dependency because theymodify the samemetadata field. The if statement

requires f_result.hit to determine the execution of the broadcast match function.

Since the broadcastmatch function is stateless and not data-dependent on the if state-

ment, the PSDN compiler draws the control dependency from the if statement to the

broadcast action function.

In terms of data dependence, the compiler can resolve false dependencies through

variable renaming with a static single assignment (SSA) form. However, this work opts

not to resolve false dependencies. Variable renaming requires additional instructions,

which can introduce overhead on resource utilization and latency. For instance, the

forward and broadcast action functions have write-after-write dependencies. A com-

piler could allocate these functions in parallel by renaming meta.dst_port another

name, but this would require additional resources on registers to save the local results.

Furthermore, the metadata field meta.dst_port is a global variable, meaning that the

local modification in both forward and broadcast should be synchronized. Therefore,

this work decides not to resolve these dependencies to avoid additional resource usage

and synchronization overheads.

3.3 Scheduling Scheme

The PSDN compiler schedules the execution order of functions in the PDG and maps

them into a pipeline. To reduce the pipeline length, the pipeline scheduler allocates

independent functions within the same pipeline stage. It begins by estimating the laten-

cies in clock cycles of each function and then uses a greedy-based algorithm to allocate

the functions efficiently.

38

cycles = c (fixed)

search key

parallel

search

(a) exactmatch function

cycles = 𝛼 log(d)+𝛽

search key

d
ep

th
 (

d
) find the

longest

match

(b) lpmmatch function

search key

cycles = 𝛼 log(w) +𝛽 log(d) + 𝛾

width (w)

d
ep

th
 (

d
)

cell: 0, 1, X

find the most

similar match

(c) ternarymatch function

reg2reg1

Non-blocking assignments

Conditions

1cycle

Operators

1cycle

2cycles
1cycle

cycles = # insts - # non-blocking assigns

(d) Action function

@maxLatency(n)

extern hash(…);

P4 code

hash

cycles = 2n

PSDN Annotation Parser

black

box

(e) Extern function

Figure 3.6: Function cycle estimation

3.3.1 Clock Cycle Estimation

Figure 3.6 shows clock cycle estimation of the PSDN compiler. The PSDN compiler esti-

mates the required clock cycles for each function block. This paper describes the esti-

mation methods of match, action, and extern functions.

The cycles formatch functions depend on their types: exactmatch, ternarymatch,

and lpm match. Although the cycle estimation formulas for match functions depend

on their specific implementations, this work abstracts the execution models of these

functions with the number of entries (depth, 𝑑) and length of a key (width, 𝑤). Table 3.1

39

Table 3.1: Cycle estimation of match functions

Lookup type Estimated cycles

exact 6
lpm 20 (= 2 log(256) + 4)
ternary 2 ⌊log(⌈𝑤/40⌉)⌋ + 6

shows the cycle estimation of the match functions used by the PSDN compiler, setting

𝑑 = 256 and referenced from Xilinx documentation [63, 64, 65].

An exact match function (Figure 3.6a) uses a content-addressable memory (CAM)

that conducts a parallel search to find an exact match of entries with a key. Therefore,

the exactmatch function takes a constant latency.

An lpmmatch function (Figure 3.6b) finds the longest prefix match (LPM) to search

keys. Calculating the length of the prefix match of each entry is constant, but finding

the longest length takes more time when the number of entries (depth) is large. This

process requires multiplexers to compare each entry with a binary search. Therefore,

the estimated latency of the lpmmatch function is a linear function of log(𝑑).

A ternary match function (Figure 3.6c) uses a ternary-CAM (TCAM) module that

accepts don’t-care terms (X) as elements of entries. The TCAM module finds the most

similar match of entries with a key. Thus, TCAM requires multiplexers for width and

depth dimensions to calculate the similarmatch for each entry and find themost similar

match. The estimated cycles are a linear function of log(𝑤) and log(𝑑).

For action functions (Figure 3.6d), non-blocking assignments that are independent

of each other take one cycle. Each blocking assignment and conditional statement also

takes one cycle. For conditional branches, the estimator sumsup the cycles of the longest

40

branch. Therefore, the estimated latency of the action functions equals the number of

instructions in the longest branch minus the number of non-blocking assignments.

For extern functions (Figure 3.6e), the PSDN compiler treats them as a black box.

Since the compiler does not know how a programmer implements the extern function,

the programmer should provide information about the maximum latency of the extern

function through an annotation (@maxLatency). Then, the PSDN compiler parses this

annotation to determine the estimated cycles of the extern function.

The backend FPGA hardware uses different clock rates for action functions and

match/extern functions. The clock period for match and extern functions is twice as

long as for instructions in action functions. This difference in clocks is also considered

when estimating the cycles. Therefore, the estimated clock cycles of the extern function

(Figure 3.6e) are twice as long as the annotated cycles, and the estimated clock cycles of

the match functions (Table 3.1) are multiple of two.

3.3.2 Pipeline Scheduling Algorithm

With a PDG and estimated cycles of functions, the pipeline scheduler allocates the func-

tions to a pipeline. Algorithm 3.1 illustrates the pipeline scheduling of the PSDN com-

piler. The algorithm first identifies the functions that do not have any dependencies (𝐼)

from the PDG and identifies the next-independent functions (𝑁) whose dependencies

are resolved once the functions in 𝐼 are allocated. Next, the algorithm identifies the

functions (𝑅) that are required to resolve the dependencies of the functions in 𝑁 .

The algorithm allocates all functions in 𝑅 within the pipeline stage and determines

where to allocate the functions in 𝐼 ∖ 𝑅. Where to allocate the function 𝑣 ∈ 𝐼 ∖ 𝑅 in a

41

Algorithm 3.1: Pipeline scheduling algorithm
Input : A program dependence graph 𝐺 = (𝑣, 𝑒)
Output : A scheduled pipeline 𝑃 that is a list of pipeline stages
// PRED(𝑣): predecessors of 𝑣
// SUCC(𝑣): successors of 𝑣

1 𝑃 ← ∅
2 while 𝐺 ≠ ∅ do
3 𝐼 ← {𝑣 ∣ 𝑣 ∈ 𝐺 s.t. PRED(v) = ∅ }
4 𝑁 ← ∪𝑣∈𝐼SUCC(𝑣)
5 𝑅 ← ∪𝑣∈𝑁PRED(𝑣)
6 𝑉 ← Sort 𝑣 ∈ 𝐼 ∖ 𝑅 in assending order of Latency(𝑣)
7 for 𝑣 ∈ 𝑉 do
8 if Latency(𝑣) ≤ MaxLatency(𝑅) then
9 𝑅 ← 𝑅 ∪ {𝑣}
10 else if MaxLatency(𝑅) > MaxLatency(𝑁) then
11 𝑅 ← 𝑅 ∪ {𝑣}
12 end
13 end

// ⊕: concatenation operator
14 𝑃 ← 𝑃 ⊕ 𝑅
15 𝐺 ← 𝐺 ∖ 𝑅
16 end

pipeline stage depends on Latency(v) over MaxLatency(R) and MaxLatency(N). The

scheduling algorithm selects either the current stage (𝑅) or the next stage (𝑁) whose

MaxLatency is larger than Latency(v). If Latency(v) is larger than MaxLatency(R)

andMaxLatency(N), the scheduler opts for the stagewith the longerMaxLatency. These

steps are repeated until all functions in the PDG (𝐺) are allocated.

Figure 3.7 illustrates an example of pipeline allocation for the PDG shown in Fig-

ure 3.5. The pipeline scheduling algorithm allocates functions that are independent of

each other to the same pipeline stage. In Figure 3.7, forward and broadcast match

42

sy
n
ce

r FM

sy
n
ce

r FA

sy
n
ce

r

BM IF BA

cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FM: forward.match BM: broadcast.match

FA: forward.action BA: broadcast.action IF: if statement

Figure 3.7: A scheduled pipeline

functions are located in the same stage. Functions allocated to the same pipeline stage

are executed in parallel.

To synchronize data of each pipeline stage, the PSDN compiler inserts a synchro-

nization barrier called a syncer between stages. A syncer receives results from the pre-

ceding stage, updates metadata and global packet header values, and transmits them

to the next stage. Because the syncer introduces additional clock cycles, inserting too

many syncers would increase latencies and diminish parallelization benefits. Conse-

quently, the PSDN compiler employs a function fusion scheme to minimize the number

of syncers, as discussed in the following section.

3.4 Merging Scheme

3.4.1 Code Generation

The code generation of the PSDN compiler follows a similar approach to the P4-SDNet

compiler [39]. The PSDN compiler translates instructions in action functions and basic

blocks into PX instructions within tuple engines. A tuple engine in the PX language [40]

43

consists of multiple sections that contain assignment statements (update) and a jump

operation to thenext section (move_to_section). The PSDNcompiler groupsnon-blocking

assignment statements into the same section and translates conditional statements into

themove_to_section operation.

3.4.2 Backend Optimization and Function Fusion

During the code generation process, the PSDN compiler performs function fusion on ac-

tion functions to reduce latency. First, it merges concurrent functions within the same

pipeline stage into one tuple engine. For example, if the instructions in the action func-

tions have no dependencies on each other, the compiler places these instructions into

one section andmerges the functions (Figure 3.8a). Second, the PSDN compiler concate-

nates an action function with the neighboring action function in the adjacent pipeline

stages into one tuple engine. For instance, it concatenates the following sections into

preceding sections, increases the number of the following sections by the number of the

preceding sections, and sets the move_to_section operation of forward_end to point

to the following broadcast_start section (Figure 3.8b).

Figure 3.9 illustrates the fused pipeline. The PSDN compiler fuses if statement,

forward action function, and broadcast action function into a single action function.

The instructions for if statement and foward action are located in the same section, and

the instructions for broadcast action are located in the following sections. In this way,

the PSDN compiler successfully deletes the syncer between the second and the third

pipeline stages in Figure 3.7. Compared to Figure 3.7, the fused pipeline has a shorter

processing time due to the reduction of the syncer.

44

method update = {

 forward_req.key =

 ethernet.dstAddr}

method update = {

 broadcast_req.key =

 src_port }

method update = {

 forward_req.key = ethernet.dstAddr;

 broadcast_req.key = src_port }

Non-blocking assignments

forward.action_function broadcast.action_function

(a) Merge action functions in the same pipeline stage

class ForwardAction::TupleEngine(3) {

 ... class forward_end::Section(3) {…} }

class BroadcastAction::TupleEngine(3) {

 class broadcast_start::Section(1) {…} ...}

class ForwardBroadcastAction::TupleEngine(6) {

 ... class forward_end::Section(3) {…}

 class broadcast_start::Section(4) {…} ...}

forward.action_function

broadcast.action_function

Append sections

(b) Concatenate action functions in the adjacent pipeline stage

Figure 3.8: Function fusion methods

sy
n
ce

r FM

sy
n
ce

r FA BA

IF

BM

cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FM: forward.match BM: broadcast.match

FA: forward.action BA: broadcast.action IF: if statement

Figure 3.9: A fused pipeline

45

4. Split, Schedule, Merge for Deep Learning Models

This chapter describes an overview of a split-schedule-merge scheme of the TeMCO com-

piler for tensor-decomposed deep learning models. 1) The splitting scheme includes

tensor decomposition [47, 55, 56] and inlining by TeMCO. Next, the compiler 2) sched-

ules the execution orders of restore layers and optimizes skip connections. Finally, the

compiler 3)merges non-decomposed activation layers with adjacent lconv and fconv. By

performing these optimizations, the TeMCO compiler replaces the uses of internal ten-

sors with reduced tensors produced by decomposed convolution sequences, reducing

the peak memory usage of internal tensors.

4.1 Overview

This work introduces TeMCO, which is designed to optimize tensor-decomposed deep

learning models to reduce peak memory usage incurred by internal tensors. The com-

pilation process of the TeMCO compiler, illustrated in Figure 4.1, involves several se-

quential steps to achieve the replacement of internal tensors with reduced tensors (Sec-

tion 4.2). Firstly, the compiler receives a tensor-decomposed deep learning model as an

input and inlines decomposed convolution layers, analyzing the dependencies of layers.

Secondly, it optimizes skip connections to replace the used internal tensorswith reduced

tensors, rescheduling precedent restore layers and analyzingmemory and computation

46

Activation

Layer Fusion

Skip Connection

Optimization

① Activation fusion

② Layer transformation

and activation fusion

① Copy restore operations

② Replace skip connections

 with reduced tensors

Tensor-decomposed model

conv1 conv2 conv3First conv (fconv)

Last conv (lconv)

Core convolutions

Activation layer

Original tensors

Reduced tensors

① ②

①

② ①

Figure 4.1: The TeMCO compiler

overheads of copying the layers (Section 4.3). Thirdly, it merges non-decomposed acti-

vation layers with neighboring lconv and fconv and generates specialized kernels not to

allocate internal tensors but to computewith reduced tensors only (Section 4.4.1). Lastly,

it transforms concatenation layers and lconv layers to reduce the number of layer calls

and to be suitable for activation layer fusion (Section 4.4.2).

The actual implementation of TeMCO uses specific environments, but the concept of

TeMCO’s optimizations can be applied in broader environments. First, the TeMCO pro-

totype implementation accepts Tucker-decomposed [47] models, but the optimizations

can be applied to other tensor decompositionmethods, described in Section 2.2.1, which

have 1×1 factor convolution layers in front of and at the end of core convolutions (fconv

47

a = conv1(in)

b = relu(a)

c = conv2(b)

d = relu(c)

e = concat(d,b)

f = conv3(e)

out = relu(f)

return out

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

a = conv1.lconv(a2)

b = relu(a)

c1 = conv2.fconv(b)

c2 = conv2.cconv(c1)

c = conv2.lconv(c2)

d = relu(c)

e = concat(d,b)

f1 = conv3.fconv(e)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out

(a) Original model

(b) Decomposed model

Figure 4.2: Tensor decomposition example

and lconv). Second, the fused layer implementation of TeMCO uses CUDA [66], but the

tiling mechanism can be augmented for CPU-based environments. Finally, the imple-

mentation of TeMCO uses PyTorch [57] FX graph compilers, but the transformation can

be implemented by MLIR [67] infrastructures or other deep learning compilers.

4.2 Splitting Scheme

4.2.1 Tensor Decomposition and Inlining

The TeMCO compiler accepts tensor-decomposed deep learning models as inputs, em-

ploying tensor decomposition methods [47, 55, 56] as a splitting scheme. Tensor decom-

position schemes decompose a convolution layer into several decomposed convolution

layers, as described in Section 2.2.1. However, the previous tensor decomposition com-

pilers [15, 16] encapsulate these layers into a decomposed convolution sequence. These

48

a1 a2 b c1 c2 c d e f1 f2 f outin a

: fconv : cconv : lconv : relu : concat

Figure 4.3: Program dependence graph

compilers define a class that represents the decomposed convolution sequence and in-

cludes all convolution operations inside the class.

Compared to the previous compilers, the TeMCO compiler inlines the decomposed

convolution layers into a model as a form of the first convolution (fconv), core convo-

lution (cconv), and the last convolution (lconv). Figure 4.2 describes an inlined tensor

decomposition example. The decomposed convolution layers (fconv, cconv, lconv) of

conv1, conv2, and conv3 are inlined into the model, and they use reduced tensors (a1,

a2, c1, c2, f1, f2) to propagate the internal results. The actual operation of cconv de-

pends on the type of tensor decomposition methods (Section 2.2.1), but TeMCO’s opti-

mizations only use fconv and lconv, so the TeMCO compiler can conduct the optimiza-

tions in regardless of the type of cconv.

4.2.2 Dependency Analysis

The TeMCO compiler analyzes data dependencies of the inlined decomposedmodel and

generates a programdependence graph (PDG). The TeMCO compiler employs an existing

dependency analysis [68] to build a PDG. Figure 4.3 illustrates a PDG of Figure 4.2b.

The PDG describes dependencies among layers, and the compiler can acquire lists of

predecessors and successors of a layer from the PDG. For example, predecessors of a

layer e (PRED(e)) are b and b, and successors of a layer b (SUCC(b)) are c1 and e.

49

Algorithm 4.1: Skip connection optimization
Input : An ordered tensor node list 𝐿 in SSA form,

Program dependence graph 𝐺 of 𝐿,
Liveness analysis result 𝑙𝑖𝑣𝑒 ← Liveness(𝐿, 𝐺)

Output : Skip-connection-optimized tensor node list 𝑂
// SUCC(𝑣, 𝐺): successor list of 𝑣 in 𝐺
// DISTANCE(𝑎, 𝑏): distance of two node 𝑎,𝑏

1 𝑂 ← 𝐿
2 for 𝑛 in 𝐿 do

// Identify skip connections with distance
3 𝑑 ← DISTANCE(𝑙𝑖𝑣𝑒[𝑛].𝑏𝑒𝑔𝑖𝑛, 𝑙𝑖𝑣𝑒[𝑛].𝑒𝑛𝑑)
4 if 𝑑 > DISTANCE_THRESHOLD then

// Find reduced tensors and restore operations
5 𝑙 ← FindReduced(𝑛, 𝐺)

// Calculate overheads
6 if Overhead(n, l) then
7 for 𝑠 in SUCC(n, G) do

// Insert operations 𝑙.𝑙𝑖𝑠𝑡 before 𝑠
8 𝑂 ← InsertBefore(O, s, COPY(l.list))
9 end

10 end

4.3 Scheduling Scheme

To address the memory usage problem of skip connections in a tensor-decomposed

model, the TeMCO compiler performs skip connection optimization. TeMCO schedules

and reorders the execution of restore layers in skip connections. The optimization pro-

cess for skip connections involves the following steps (Algorithm 4.1):

1. Identify skip connections: The compiler first identifies all skip connections

present within themodel architecture. To identify skip connections, the compiler

performs liveness analysis on the model.

50

2. Find precedent reduced tensors and required restore layers: For each iden-

tified skip connection, the compiler traverses the dependence graph of the model

and recursively finds the reduced tensors comprised by the skip connection’s in-

ternal tensor and required restore layers.

3. Evaluate FLOPS and memory trade-offs: The compiler assesses the trade-offs

regardingfloating-point operations (FLOPS) andmemory associatedwith copying

the necessary restore layers that precede the skip connection. This evaluation

determines whether copying these layers would result in more computational

cost or memory overheads.

4. Replace skip connections: Based on the evaluation, the compiler copies and

pastes the layers right before the use of the skip connections and replaces the

original skip connections with the reduced tensors.

4.3.1 Identifying Skip Connections

To find skip connections, the TeMCO compiler first performs a liveness analysis of ten-

sors on the whole model. Then, the TeMCO compiler finds skip connections whose ten-

sors are long-lived through the inference, calculating the distance from the beginning

to the end of the liveness.

Algorithm 4.2 shows the liveness analysis of the TeMCO compiler. The TeMCO com-

piler follows traditional liveness analysis algorithms [69, 70], but simplifies the algo-

rithms to find the first def and the last use as begin and end, respectively. This can be

done because a deep learningmodel is a form of a directly acyclic graph (DAG) that does

51

Algorithm 4.2: Liveness analysis
Input : An ordered tensor node list 𝐿 in SSA form,

Program dependence graph 𝐺 of 𝐿
Output : Liveness analysis result list 𝑙𝑖𝑣𝑒 for each node 𝑛 in 𝐿
// PRED(𝑣, 𝐺): predecessor list of 𝑣 in 𝐺

1 Function Liveness(L,G):
2 𝑙𝑖𝑣𝑒 ← {}
3 for 𝑛 in 𝐿 do
4 𝑙𝑖𝑣𝑒[𝑛].𝑏𝑒𝑔𝑖𝑛 ← 𝑛
5 for 𝑝 in PRED(𝑛, 𝐺) do
6 𝑙𝑖𝑣𝑒[𝑝].𝑒𝑛𝑑 ← 𝑛
7 end
8 end
9 return 𝑙𝑖𝑣𝑒

not have loops inside, and the model is a form of a single static assignment (SSA) that all

the variable def is occurred once.

Skip connection optimization uses the result of liveness analysis to identify skip con-

nections. TeMCO calculates the live distance of all nodes and finds long-lived tensors by

comparing DISTANCE_THRESHOLD (Lines 3 to 4 in Algorithm 4.1). If a tensor remains live

across multiple layers from its creation to its final usage, the compiler identifies it as a

skip connection and continues the rest of the optimization steps.

Figure 4.4 shows a code example of skip connection optimization. In this exam-

ple, the compiler identifies tensor b as a skip connection. The tensor b is live across

multiple layers, and the distance of begin and end is larger than DISTNACE_THRESHOLD

= 3. The identified skip connections become targets of skip connection optimization,

and the compiler performs the following evaluations and optimizations on these skip

connections to reduce memory usage precisely.

52

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

a = conv1.lconv(a2)

b = relu(a)

c1 = conv2.fconv(b)

c2 = conv2.cconv(c1)

c = conv2.lconv(c2)

d = relu(c)

e = concat(d,b)

f1 = conv3.fconv(e)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

a = conv1.lconv(a2)

b = relu(a)

c1 = conv2.fconv(b)

c2 = conv2.cconv(c1)

c = conv2.lconv(c2)

d = relu(c)

a’ = conv1.lconv(a2)

b’ = relu(a’)

e = concat(d,b’)

f1 = conv3.fconv(e)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out
(a) Decomposed model

(b) Skip connection optmized model

Figure 4.4: Skip connection optimization example

4.3.2 Finding Precedent Reduced Tensors and Restore Layers

The TeMCO compiler finds precedent reduced tensors of a skip connection and identifies

required layers to restore the skip connection by the reduced tensors. Algorithm 4.3 de-

scribes how the compiler finds precedent reduced tensors and required restore layers.

The function FindReduced (Lines 17 to 31) recursively traverses the program depen-

dence graph (PDG, 𝐺) of a model and searches the precedent reduced tensors. To do

that, the function FindReduced uses the function IsLConv (Lines 1 to 7) that returns

whether the node is lconv or not. The predecessor of lconv is the reduced tensor whose

channel size is restored by the lconv. The function IsLConv identifies the layer as lconv if

the operator type is a convolution layerwith1×1 kernels and the size of the output chan-

nel is larger than the size of the input channel. In Figure 4.4, the function FindReduced

53

Algorithm 4.3: Finding reduced tensors and restore layers
Input : A tensor node 𝑣, a program dependence graph 𝐺
Output : Results 𝑟𝑒𝑠 of reduced tensor node list, size, peak memory usage

// PRED(𝑣, 𝐺): predecessor list of 𝑣 in 𝐺
// SIZE(𝑣): tensor size of 𝑣 by shape inference

1 Function IsLConv(𝑣):
2 𝑜𝑝 ← OP(𝑣) // operator of 𝑣
3 if 𝑜𝑝.𝑡𝑦𝑝𝑒 = 𝑐𝑜𝑛𝑣 then
4 if 𝑜𝑝.𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 𝑜𝑝.𝑠𝑡𝑟𝑖𝑑𝑒 = (1, 1) then
5 if 𝑜𝑝.𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 > 𝑜𝑝.𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 then
6 return True
7 return False

8 Function Compare(𝑎, 𝑏):
9 return 𝑎.𝑠𝑖𝑧𝑒 + 𝑏.𝑝𝑒𝑎𝑘 < 𝑏.𝑠𝑖𝑧𝑒 + 𝑎.𝑝𝑒𝑎𝑘
10 Function Peak(𝑙, 𝑣):
11 𝑝𝑒𝑎𝑘 ← 0, 𝑟𝑒𝑠𝑖𝑑𝑒𝑑 ← 0
12 for 𝑒 in 𝑙 do
13 𝑝𝑒𝑎𝑘 ← MAX(𝑟𝑒𝑠𝑖𝑑𝑒𝑑 + 𝑒.𝑝𝑒𝑎𝑘, 𝑝𝑒𝑎𝑘)
14 𝑟𝑒𝑠𝑖𝑑𝑒𝑑 ← 𝑟𝑒𝑠𝑖𝑑𝑒𝑑 + 𝑒.𝑠𝑖𝑧𝑒
15 end
16 return ← MAX(𝑟𝑒𝑠𝑖𝑑𝑒𝑑 + SIZE(𝑣), 𝑝𝑒𝑎𝑘)
17 Function FindReduced(𝑣, 𝐺):
18 if IsLConv(v) then
19 𝑟𝑒𝑠.𝑙𝑖𝑠𝑡 ← [𝑣], 𝑟𝑒𝑠.𝑠𝑖𝑧𝑒 ← SIZE(𝑣)
20 𝑟𝑒𝑠.𝑝𝑒𝑎𝑘 ← SIZE(𝑣) + SIZE(PRED(𝑣, 𝐺)[0])
21 return 𝑟𝑒𝑠
22 else
23 𝑝𝑟𝑒𝑑𝐿𝑖𝑠𝑡 ← []
24 for 𝑛 in PRED(𝑣, 𝐺) do
25 𝑝𝑟𝑒𝑑𝐿𝑖𝑠𝑡 ← 𝑝𝑟𝑒𝑑𝐿𝑖𝑠𝑡 ∪ FindReduced(n,G)
26 end
27 𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐿𝑖𝑠𝑡 ← ORDER(Compare, 𝑝𝑟𝑒𝑑𝐿𝑖𝑠𝑡)
28 𝑟𝑒𝑠.𝑙𝑖𝑠𝑡 ← CONCAT(𝑒.𝑙𝑖𝑠𝑡 for 𝑒 in 𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐿𝑖𝑠𝑡) ∪ [𝑣]
29 𝑟𝑒𝑠.𝑠𝑖𝑧𝑒 ← SIZE(𝑣), 𝑟𝑒𝑠.𝑝𝑒𝑎𝑘 ← Peak(𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐿𝑖𝑠𝑡, 𝑣)
30 return 𝑟𝑒𝑠
31 end

54

is applied on the skip connection tensor b, and the function IsLConv identifies the layer

a = conv1.lconv(a2) as a restore layer.

Because the number of the required restore layers could be larger than one, the

TeMCO compiler schedules the execution order of the restore layers to minimize the

peakmemory usage on restoring. The function Peak (Lines 10 to 16) calculates the peak

memory usage of the tensor node 𝑣 with the ordered predecessor list 𝑙 by accumulating

the peak memory usage (𝑝𝑒𝑎𝑘) of the predecessors in 𝑙 and the tensor size (𝑠𝑖𝑧𝑒) of 𝑣.

With calculated 𝑝𝑒𝑎𝑘 and 𝑠𝑖𝑧𝑒, the function FindReduced orders the predecessor list

with the function Compare (Lines 8 to 9). Finding the optimal execution order that has a

minimum peak memory usage is NP-hard, so this work employs a heuristic comparison

to reduce the peak memory usage of the predecessors. Other previous work [69, 71, 72,

73] introduces scheduling algorithms to optimize peak memory usage, and this work

will improve the scheduling algorithm with their ideas.

The function FindReduced finally returns the ordered list of predecessors that are

scheduled to reduce peakmemory usage, the size of current tensor node 𝑣, and the peak

memory usage calculated by the function Peak. As FindReduced returns the lconv lay-

ers as leaf nodes, the predecessor list takes the reduced tensors as the arguments only.

In Figure 4.4 the result list of FindReduced(b) is [a=conv1.lconv(a2), b=relu(a)].

The precedent reduced tensor of the skip connection b is the tensor a, and the restore

layers that are required to restore the tensor a to b is conv1.lconv and relu. The fol-

lowing evaluation assesses the overheads of copying these restore layers, estimating

whether the skip connection optimization is valuable or not.

55

Algorithm 4.4: Computation and memory overhead check
Input : Target skip connection node 𝑛, Reduced tensor node list 𝑙,

Program dependenge graph 𝐺,
Thresholds COMPUTE_THRESHOLD

Output : Boolean value that overheads are less than thresholds

// PRED(𝑣, 𝐺): predecessor list of 𝑣 in 𝐺
// SIZE(𝑣): tensor size of 𝑣 by shape inference
// FLOPS(𝑣): FLOPS of 𝑣 by calculating weight sizes

1 Function Overhead(n,l):
2 𝑐 ← 0, 𝑚 ← 𝑆𝐼𝑍𝐸(𝑛)
3 for e in 𝑙.𝑙𝑖𝑠𝑡 do
4 𝑐 ← 𝑐 + FLOPS(e)
5 end
6 for p in PRED(n,G) do
7 𝑚 ← 𝑚 + SIZE(p)
8 end
9 return 𝑐 ≤ COMPUTE_THRESHOLD and 𝑙.𝑝𝑒𝑎𝑘 ≤ 𝑚

4.3.3 Evaluating FLOPS and Memory Trade-Offs

Before substituting skip connections with reduced tensors, the TeMCO compiler evalu-

ates the FLOPS and memory trade-offs associated with introducing additional restore

layers. Tensor decomposition reduces the FLOPS of the original model, as explained

in Section 2.2.2, but replacing skip connections with reduced tensors necessitates addi-

tional computation from restore layers found by Algorithm 4.3. As the restore layers

are copied and inserted right before the original skip connection is used, the compiler

should estimate whether replacing with the reduced tensors and copying and inserting

these restore layers is profitable or not.

Algorithm4.4 describes how the TeMCOcompiler evaluates thememory and compu-

tation overheads. For the computation overhead, the function Overhead (Algorithm 4.4)

56

accumulates the FLOPS of restore layers. The function FLOPS estimates the FLOPS of the

convolution layers by calculating weight sizes as described in Section 2.2.2.

For example, the TeMCO compiler calculates the FLOPS of copying restore layers

in Figure 4.4 and checks whether the COMPUTE_THRESHOLD satisfies. Here, this example

sets the COMPUTE_THRESHOLD as the FLOPS of the originalmodelwithout decomposition.

The FLOPS comparison is outlined by Equation (4.1), where 𝐹(layer) represents the

FLOPS of a layer:

𝐹(conv1.fconv) + 𝐹(conv1.cconv)

+ 2𝐹(conv1.lconv) + 2𝐹(relu)

≤ 𝐹(conv1) + 𝐹(relu)

(4.1)

In Equation (4.1), the FLOPS of the required restore layers (conv1.lconv and relu)

are added. 𝐹(relu) can be removed on both sides, and Equation (4.1) can be expanded

by Equation (2.1) and Equation (2.2), described in Equation (4.2):

𝐶𝑖𝑛𝐶𝑎1𝐻𝑖𝑛𝑊𝑖𝑛 + 𝐶𝑎1𝐶𝑎2𝐾2𝐻𝑎𝑊𝑎

+ 2𝐶𝑎2𝐶𝑎𝐻𝑎𝑊𝑎 + 𝐹(relu)

≤ 𝐶𝑖𝑛𝐶𝑎𝐾2𝐻𝑎𝑊𝑎

(4.2)

Equation (4.2) can be further expanded by using Equation (2.3) with decomposition

ratio 𝑟, described in Equation (4.3):

57

𝑟𝐶2
𝑖𝑛𝐻𝑖𝑛𝑊𝑖𝑛 + 𝑟2𝐶𝑖𝑛𝐶𝑎𝐾2𝐻𝑎𝑊𝑎

+ 2𝑟𝐶2𝑎𝐻𝑎𝑊𝑎 + 𝐹(relu)

≤ 𝐶𝑖𝑛𝐶𝑎𝐾2𝐻𝑎𝑊𝑎

(4.3)

During the compilation process, the TeMCO compiler computes the FLOPS based on

tensor sizes and verifies if Equation (4.3) is met. By comparing the computation over-

heads with the original model, the TeMCO compiler aims not to introduce more latency

than the original model without decomposition. Note that the skip connection optimiza-

tion copies the required restore layers, so the additional computation overheads occur

compared to the decomposed model.

For memory overheads, the TeMCO compiler compares the peak memory usage

(𝑙.𝑝𝑒𝑎𝑘) of restore layers with the accumulated restored sizes of predecessors. This

means that the copied restore layers should use less memory than the restored tensors.

In Figure 4.4, the compiler derives the comparison formula, described in Equation (4.4):

𝑆𝐼𝑍𝐸(𝑎2) + 𝑆𝐼𝑍𝐸(𝑎) ≤ 𝑆𝐼𝑍𝐸(𝑎) + 𝑆𝐼𝑍𝐸(𝑏) (4.4)

The duplicated size of a can be removed, and Equation (4.4) can be expanded by

using Equation (2.9), described in Equation (4.5):

𝐶𝑎2𝐻𝑎𝑊𝑎 ≤ 𝐶𝑎𝐻𝑎𝑊𝑎 (4.5)

58

With the decomposition ratio 𝑟 < 1, 𝐶𝑎2 is always smaller than 𝐶𝑎 as 𝐶𝑎2 = 𝑟𝐶𝑎

satisfies. Then, Equation (4.5) becomes always true. Therefore, the TeMCO compiler

decides to copy the restore layers if Equation (4.3) is true. After evaluating the compu-

tation and memory trade-offs, the compiler copies the restore layers and replaces the

skip connection with the reduced tensor.

4.3.4 Replacing Skip Connections

With the results of the evaluation, the TeMCOcompiler duplicates and inserts the restore

layers right before the use of the skip connection and replaces the original skip connec-

tionwith the reduced tensor. In Figure 4.4, the compiler finds the sequence of the restore

layer[a=conv1.lconv(a2), b=relu(a)] and evaluates the overheads of the sequence

with thresholds. If the overheads are less than the thresholds, the compiler copies the

sequence and inserts it right before the use of the skip connection e=concat(d,b). To

preserve the SSA form of a model, the compiler renames the copied tensors from a, b

to a', b', respectively. By duplicating the restore layers, the skip connection optimized

model in Figure 4.4 has the reduced tensor a2 as the replaced skip connection instead

of the original tensor b. Then, the optimized model reduces the peak memory usage as

long as the skip connection lives. If the size of the tensor b is 𝐶𝑎𝐻𝑎𝑊𝑎 and the decom-

position ratio 𝑟 < 1, the size of the reduced tensor a2 is 𝑟𝐶𝑎𝐻𝑎𝑊𝑎. Then, the optimized

model uses less memory of (1−𝑟)𝐶𝑎𝐻𝑎𝑊𝑎 than the decomposedmodel as long as the

skip connection lives.

59

C3

H3

W3

K′

K′

C′C′

C2

H2

W2

K

K

K K′

K K′
T

lconv fconvReLU + Pool

×

= ×

=
C2 C3

Reduced2 Reduced3

T

Figure 4.5: Fused layer in Figure 2.8c

4.4 Merging Scheme

4.4.1 Activation Layer Fusion

The TeMCO compiler employs activation layer fusion as a merging scheme. Despite the

compiler’s efforts to optimize skip connections, the model in Figure 4.8 still contains in-

ternal tensors used in non-decomposed activation layers, which contribute to the overall

peak memory usage as described in Section 2.2.3. Therefore, the TeMCO compiler fuses

non-decomposed activation layers with the preceding lconv and the succeeding fconv

not to allocate internal tensors used within these layers. Then, the fused layer conducts

convolution, activation, and convolution operations using a reduced tensor and skip

allocating the original tensor.

This work implements fused layers with tiling of convolution, activation, and con-

volution to fuse the operation sequence of these operations. Figure 4.5 illustrates the

operation of a fused layer. The purpose of fusing these layers is not to allocate the orig-

inal tensors (Output1 and Output2 in Figure 2.8b) that are used in the activation layer.

Therefore, the fused layer uses tiled memory space in terms of kernel dimension (𝐾

60

and 𝐾 ′) and tiled channel dimension (𝑇 over 𝐶′). Finally, the fused layer performs

operations with the reduced tensors (Reduced2 and Reduced3) and gets reduced peak

memory usage.

The types of activation and pooling layers can vary in the implementation of various

deep learning models. For example, VGG [43] has sequences of Conv - ReLU - Conv and

Conv - ReLU - MaxPool - Conv. However, most of the fusing target sequences are in the

form of Conv - ReLU - Conv, and the other sequences are in the form of Conv - ReLU -

Pool - Conv. Once this work implements the generalized fused layers, activation layer

fusion can be applied to other models by replacing the actual operations of activation

layers, such as SiLU [74] or GeLU [75]. The activation layer fusion scheme can be further

developed when automatic operation fusion is implemented.

This work handles various activation layer fusions, including various activation se-

quence combinations between lconv and the activation layer. Firstly, Figure 4.6 depicts

a fused layer implementation of lconv - ReLU - fconv in Figure 4.5. This research intro-

duces a fused kernel approach aimed at executing parallelized operations across the

𝐶2, 𝐻, and 𝑊 dimensions. The fused kernel begins by performing nested and tiled

matrix multiplications using 1 × 1 convolutions on the input tensor IN and weight ten-

sor W1. This convolutional operation is designed to iterate matrix multiplications over

each channel 𝐶1 within the tensor. The output v1 from these convolutions then under-

goes an activation process using the ReLU function, and the resulting values are stored

within a designated tile named tileMID. This approach enables efficient parallelized

computation, utilizing tiled computation within each stage of the fused kernel to mem-

ory footprints during deep learning inference.

61

1 Tensor fused_crc(Tensor IN,W1,B1,W2,B2){
2 /* T: tile size
3 bx,by,bz: block idx of x,y,z dimension
4 tx,ty,tz: tile idx of x,y,z dimension
5 */
6 c2 = bx * T + tx; //index of C2 with x
7 h = by * T + ty; //index of H' with y
8 w = bz * T + tz; //index of W' with z
9

10 v3 = B2[c2]; //load bias
11 for(i=0; i<C/T; i++){
12 v1 = B1[c]; //load bias
13 for(j=0; j<C1/T; j++){
14
15 //load IN and W1 into tile
16 tileIN[tx][ty][tz] = IN[j*T+tx][h][w];
17 tileW1[tx][ty] = W1[i*T+tx][j*T+ty];
18 __syncthreads();
19
20 //perform lconv
21 for(k=0; k<T; k++)
22 v1+=tileIN[k][ty][tz]*tileW1[tx][k];
23 __syncthreads();
24 }
25 //apply activation and load W2
26 tileMID[tx][ty][tz] = relu(v1);
27 tileW2[tx][ty] = W2[c2][i*T+ty];
28 __syncthreads();
29
30 //perform fconv
31 for(l=0; l<T; l++)
32 v3+=tileMID[l][ty][tz]*tileW2[tx][l];
33 __syncthreads();
34 }
35 //update result to OUT
36 OUT[c2][h][w] = v3;
37 return OUT;
38 }

Figure 4.6: The fused kernel code of lconv - ReLU - fconv

62

1 Tensor fused_crpc(Tensor IN,W1,B1,W2,B2,p){
2 // p: kernel size of pooling layer
3 c2 = bx * T + tx; //index of C2 with x
4 h = by * T + ty; //index of H' with y
5 w = bz * T + tz; //index of W' with z
6
7 v3 = B2[c2]; //load bias
8 for(i=0; i<C/T; i++){
9 v1 = B1[c]; //load bias

10 for(j=0; j<C1/T; j++){
11
12 //load IN and W1 into tile
13 tileIN[tx][ty][tz] = IN[j*T+tx][h][w];
14 tileW1[tx][ty] = W1[i*T+tx][j*T+ty];
15 __syncthreads();
16
17 //perform lconv
18 for(k=0; k<T; k++)
19 v1+=tileIN[k][ty][tz]*tileW1[tx][k];
20 __syncthreads();
21 }
22 //apply activation, pooling, and load W2
23 tileMID[tx][ty][tz] = relu(v1);
24 __syncthreads();
25 tileMID2[tx][ty][tz] = pool(tileMID[tx][p*ty][p*tz],...);
26 tileW2[tx][ty] = W2[c2][i*T+ty];
27 __syncthreads();
28
29 //perform fconv
30 for(l=0; l<T; l++)
31 v3+=tileMID2[l][ty][tz]*tileW2[tx][l];
32 __syncthreads();
33 }
34 //update result to OUT
35 OUT[c2][h][w] = v3;
36 return OUT;
37 }

Figure 4.7: The fused kernel code of lconv - ReLU - Pool - fconv

63

This work also implements lconv - ReLU - Pool - fconv to cover another variant of

lconv, activation, fconv sequences. This sequence appears when the inference of a con-

volution block is ended and moves to the next convolution block. Figure 4.7 describes

a fused layer implementation of lconv - ReLU - Pool - fconv. If the fusion sequence in-

cludes a pooling layer, the fused kernel proceeds to apply pooling operations across the

spatial dimensions 𝐻 and 𝑊 within the tileMID. Following the activation and pooling

steps, the fused kernel further performs a 1 × 1 convolution across the entire channel

𝐶, updating the result v3 to produce the final output tensor OUT.

The implementation of the fused kernel involves utilizing tiled buffers like tileMID

in sharedmemory rather than allocating the entire size of the decompressed tensor MID

in Figure 4.5. By adopting this approach, the activation layer fusion can strategically

bypass the need to fully allocate decompressed internal tensors, resulting in a notable

reduction in peakmemoryusage. This optimization is facilitated by the TeMCOcompiler,

which replaces sequences such as lconv - ReLU - fconv or lconv - ReLU - Pool - fconvwith

their corresponding fused layers.

In more detail, when the activation layer fusion is applied, the fused kernel effi-

ciently manages memory resources by leveraging tiled buffers to store and process in-

termediate results. For instance, after conducting nested and tiled matrix multiplica-

tions using 1 × 1 convolutions, the resulting activations are stored within the desig-

nated tile tileMID in shared memory. This approach minimizes unnecessary mem-

ory allocation and deallocation operations, does not use the internal tensors that have

significant memory overheads and optimizes memory usage throughout the inference.

The TeMCO compiler seamlessly integrates these optimizations by replacing conven-

64

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

a = conv1.lconv(a2)

b = relu(a)

c1 = conv2.fconv(b)

c2 = conv2.cconv(c1)

c = conv2.lconv(c2)

d = relu(c)

a’ = conv1.lconv(a2)

b’ = relu(a’)

e = concat(d,b’)

f1 = conv3.fconv(e)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

c1 = 1lconv_relu_2fconv(a2)

c2 = conv2.cconv(c1)

c = conv2.lconv(c2)

d = relu(c)

a’ = conv1.lconv(a2)

b’ = relu(a’)

e = concat(d,b’)

f1 = conv3.fconv(e)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out

(a) Skip connection optimized model

(b) Activation layer fused model

Figure 4.8: Activation layer fusion code example

tional sequence-based layers like lconv and fconv in tensor-decomposed models with

more memory-efficient fused layers, enhancing the overall memory efficiency of deep

learning inference tasks.

Figure 4.8 shows the code example of activation layer fusion. In this example, the se-

quence of conv1.lconv - relu - conv2.fconv is the target of activation layer fusion. Ac-

tivation layer fusion replaces the sequence with the fused layer 1lconv_relu_2fconv.

Here, the allocation of the tensors a and b from the activation layer relu is the signifi-

cant bottleneck of peak memory usage. However, activation layer fusion fuses the non-

decomposed activation layer with decomposed convolution layers, hiding the allocation

of these tensors and using the reduced tensors a2 and c1 for the operations.

65

4.4.2 Concatenation Layer Transformation

The TeMCO compiler transforms a concatenation layer with decomposed convolution

layers that are neighboring it to apply activation layer fusion. Figure 4.9 shows the

three forms of concatenation layer transformation. This section describes how the orig-

inal form in Figure 4.9b is generated and how the concatenation layer transformation

transforms this form to Figure 4.9c and Figure 4.9a.

Deep learning models [45, 46] with skip connections use concatenation layers to

merge the results of skip connections with the mainstream and apply convolutions on

the concatenated tensors. In terms of decomposed models, a concatenation layer pre-

cedes a decomposed convolution sequence, so the sequence is a form of Concat - fconv.

As the TeMCO compiler applies skip connection optimization described in Section 4.3

and copies restore layers into the skip connection, the concatenation layer has the re-

store layers (lconv - ReLU) as its predecessors. Therefore, the original concatenation

sequence is the form of Figure 4.9b after the skip connection optimization.

The TeMCO compiler can transform the original concatenation sequence by divid-

ing fconv and replacing the concatenation layer with an add layer, as described in Fig-

ure 4.9c. The fconv layer is an 1 × 1 convolution layer that performs matrix-vector

multiplication on each channel. On the other hand, the concatenation layer concate-

nates the result tensors of the ReLU layers in the dimension of the channel. Here, the

concatenated channel is multiplied by the weight matrix of fconv. The matrix-vector

multiplication is a type of multiply-accumulate operation, so the addition of twomatrix-

vector multiplications that are divided into two channels shows the same result as the

66

H

W

ReLUConcat lconv fconv

C1C1′
C1 C1′

C′

C

C

W

H

W

H

C′

C1

H

W

C1′

H

W

H

W

C2

C2

C+C′

C

W

H

W

H

C′

H

(a) Merging lconv

ReLU

C

H

W

lconv

C1

H

W

C1

C

C

W

H

W

C2

C+C′

C2

H

H

W

fconvW

H

C′

C′

H

W

C1′

H

W

C1′

C′
H

W

ReLUlconv

Concat

(b) Original concatenation sequence

C

H

W

lconv

C1

H

W

C1

C

C

H

W

C2

C

C2

H

fconvReLU

C′

H

W

lconv

C1′

H

W

C1′

C′

ReLU

W

W

C2

C′

C2

H

fconv

W

H

C′

W

C2

Add

+

H

W

H

W

H

(c) Dividing fconv

Figure 4.9: Concatenation layer transformation

67

original multiplication. In Figure 4.9c, the weight matrix of fconv is divided into two

channels: 𝐶 and 𝐶′. The results of two fconv layers are added with the add layer. Here,

the add layer conducts the role of accumulation in the multiply-accumulate operations.

Therefore, the results of Figure 4.9b and Figure 4.9c are mathematically the same.

On the other hand, the TeMCO compiler can transform the original concatenation

sequence by merging lconv layers and placing the concatenation layer in front of lconv,

as described in Figure 4.9a. The lconv layer is also an 1 × 1 convolution layer. Before

merging lconv, the compiler places the concatenation layer for reduced tensors, and the

layer concatenates them into the channel dimension. To ensure the results are the same,

the compiler merges the weight matrices of lconv layers in a diagonal way, filling zeros

with empty spaces. Then, the concatenated results are the same. This transformation

is applied when the types of the activation layers are the same. In Figure 4.9b, two

sequences use the same activation layer ReLU, so the transformation safely transforms

them into merging lconv, as described in Figure 4.9a.

Figure 4.10 and Figure 4.11 show the code examples of concatenation layer transfor-

mation. The TeMCO compiler can transform the concatenation layer in bothways. After

the layer transformation is applied, the model is well-formed to apply activation layer

fusion. In other words, concatenation layer transformation replaces the concatenation

layer with other forms and generates the sequence of lconv - ReLU - fconv. In this way,

concatenation layer transformation expands the applicability of activation layer fusion,

reducing peak memory usage on concatenation layers.

In the application on DenseNet [45], the TeMCO compiler merges lconv (Figure 4.9a)

to reduce the number of layer calls and divides fconv (Figure 4.9c) to manage different

68

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

c1 = 1lconv_relu_2fconv(a2)

c2 = conv2.cconv(c1)

c = conv2.lconv(c2)

d = relu(c)

a’ = conv1.lconv(a2)

b’ = relu(a’)

c3 = conv3.fconv1(d)

a3 = conv3.fconv2(b’)

f1 = add(c3,a3)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out

(b) Divide fconv

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

c1 = 1lconv_relu_2fconv(a2)

c2 = conv2.cconv(c1)

c = conv2.lconv(c2)

d = relu(c)

a’ = conv1.lconv(a2)

b’ = relu(a’)

e = concat(d,b’)

f1 = conv3.fconv(e)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out

(a) Original model

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

c1 = 1lconv_relu_2fconv(a2)

c2 = conv2.cconv(c1)

c = conv2.lconv(c2)

d = relu(c)

c3 = conv3.fconv1(d)

a’ = conv1.lconv(a2)

b’ = relu(a’)

a3 = conv3.fconv2(b’)

f1 = add(c3,a3)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out

(c) Reordering

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

c1 = 1lconv_relu_2fconv(a2)

c2 = conv2.cconv(c1)

c3 = 2lconv_relu_3fconv1(c2)

a’ = 1lconv_relu_3fconv2(a2)

f1 = add(c3,a3)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out

(d) Activation layer fusion

Figure 4.10: Dividing fconv code example

69

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

c1 = 1lconv_relu_2fconv(a2)

c2 = conv2.cconv(c1)

g1 = concat(c2,a2)

g2 = 2lconv_1lconv(g1)

e = relu(g2)

f1 = conv3.fconv(e)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out

(b) Merging lconv

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

c1 = 1lconv_relu_2fconv(a2)

c2 = conv2.cconv(c1)

c = conv2.lconv(c2)

d = relu(c)

a’ = conv1.lconv(a2)

b’ = relu(a’)

e = concat(d,b’)

f1 = conv3.fconv(e)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out

(a) Original model

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

c1 = 1lconv_relu_2fconv(a2)

c2 = conv2.cconv(c1)

g1 = concat(c2,a2)

f1 = 21lconv_relu_3fconv(g1)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out

(c) Activation layer fusion

Figure 4.11: Merging lconv code example

70

activation layers. DenseNet has an activation sequence of ReLU - Pool in themainstream,

and other skip connections only have ReLU. Therefore, the compiler divides fconv to

handle the mainstream and merges lconv of skip connections to fuse numerous lconv -

ReLU - fconv sequences. Because DenseNet has all-to-all skip connections inside, reduc-

ing the number of layer calls is significant to reduce computation overheads. Therefore,

the TeMCO compiler applies the merge of lconv to reduce the number of layer calls.

In the application on ResNet [44], the TeMCO compiler transforms the sequence of

an add layer (Figure 4.9c) to the merged lconv sequence (Figure 4.9a). ResNet merges

residual paths into the mainstream with add operation. To reduce the number of layer

calls, the compiler transforms the sequence of Figure 4.9a to Figure 4.9c. In this way,

ResNet has one fused layer instead of two in the add sequences.

71

5. Evaluation

5.1 PSDN Compiler

5.1.1 Evaluation Setup

Thiswork evaluates the PSDN compiler’s ability to reduce latencies and resource utiliza-

tion of packet processing through HDL simulation and synthesis using P4 benchmarks

from the P4-NetFPGA GitHub repository [76]. The benchmark suite contains seven P4

programs: Learning Switch, In-Network Telemetry (INT), TCP Monitor, Switch Calcula-

tor (Switch Calc.), Basic Fair Random Early Detection (Basic FRED), Heavy Hitter, and

Flow Rate. Table 5.1 provides descriptions and specifications for each program. Some

of these programs feature independent and parallelizable functions, while others have

sequential structures for monitoring and calculating packet information. The degree

of parallelism or sequential nature in these programs will influence the reduction of

latencies achieved by the PSDN compiler.

To measure the end-to-end packet processing latency, this work uses HDL simula-

tion with Vivado 2018.2. Additionally, the compiled programs are synthesized to assess

resource utilization. The testing platform is a NetFPGA-SUME board [10] equipped with

a Xilinx Vertex-7 FPGAmodule and four 10 Gbps network ports. This work further eval-

uates the throughput of the switches synthesized with the programs.

72

Table 5.1: P4 benchmarks from P4-NetFPGA GitHub [76]

Program Description # tables # registers # hashs # timestamps

Learning Switch
learns forwarding
rules from packets

3 0 0 0

INT
collects network
states in real-time

1 1 0 1

TCP Monitor
monitors TCP
connections

1 2 1 0

Switch Calc.
conducts basic
arithmetic operations

1 1 0 0

Basic FRED
drops packets based
on queuing lengths

3 4 0 1

Heavy Hitter
finds over-flowed
packets

2 3 0 1

Flow Rate
calculates flow
rate of packets

2 7 0 1

To demonstrate the effectiveness of the PSDN compiler in reducing packet process-

ing latency, resource utilization, and throughput, this work compares the proposed

methods with previous work [39]:

• Previous work: applies table-level pipeline scheduling and optimizations.

• Pipeline scheduling: applies table decomposition and function-level pipeline

scheduling without applying function fusion.

• Pipeline scheduling + Function fusion: applies table decomposition, function-

level pipeline scheduling, and function fusion.

73

0

20

40

60

80

100

120

140

160

180

200

Learning

Switch

INT TCP

Monitor

Switch

Calc.

Basic

FRED

Heavy

Hitter

Flow Rate

C
lo

ck
 c

y
cl

es

Previous work Pipeline scheduling Pipeline scheduling + Function fusion

Figure 5.1: Packet processing latency

5.1.2 Latency

This work evaluates the end-to-end packet processing latency of the compiled programs

using HDL simulation. Figure 5.1 illustrates the clock cycles required by the programs

compiled by each option. Compared to previous work [39], the PSDN compiler achieves

a 12.1% reduction in latency, as calculated by the geometric mean.

However, function-level pipeline scheduling alone does not decrease latencies for

the TCP Monitor, Basic FRED, and Flow Rate programs compared to the previous work.

These three P4 programs contain fewer parallelizable functions than the others. For

these programs, decomposing every table into separate functions increases the number

of functions and elongates the pipeline.

By employing function fusion, which merges adjacent functions, the compiler re-

duces the number of action functions and minimizes synchronization overheads. This

74

Action

ActionMatch

Match Action

Sync

Match

S
yn

c

Action

ActionMatch

Match Action

Match

fwd

bcast

smac

PSDN

Compiler

fwd

bcast

smac

Previous

work

Time ratio (%) 0 32.2 44.4 56.1 67.8 76.7 83.3 100

S
yn

c

Figure 5.2: Latency of functions in Learning Switch

approach reveals performance improvements by enhancing function-level paralleliza-

tion, particularly in programswhere the initial table decomposition increased complex-

ity without providing significant parallel execution benefits.

To thoroughly analyze how the PSDN compiler effectively reduces latency, this study

measures the clock cycles of functions in the table pipeline of the Learning Switchbench-

mark and compares the results with previous work (Figure 5.2). The Learning Switch

program includes three tables: forward (fwd), broadcast (bcast), and smac. There

is a control dependency between the fwd and bcast tables (grey arrows) and a data

dependency between the actions of the bcast and smac tables (black arrows).

Previous work [39] treats tables as execution units and sequentially allocates the

fwd and bcast tables. Since it only considers match or action dependencies [11], it par-

allelizes only thematch functions of the bcast and smac tables. Therefore, the previous

work loses the opportunity of parallelizing the fwd table.

In contrast, the PSDN compiler decomposes the tables into separatematch functions

and action functions, redirecting control dependencies to action functions. This redirec-

75

(a
)P

re
vi
ou

sw
or
k

(b
)P

SD
N
co
m
pi
le
r

Fi
gu

re
5.
3:

PD
G
of

Le
ar
ni
ng

Sw
itc

h
tr
an

sl
at
ed

in
to

SD
N
et

IR

76

tion allows prefetching of the read-only match functions. Consequently, the PSDN com-

piler can parallelize all match functions across the three tables, significantly improving

performance over the previous methods.

Figure 5.3 shows the actual compilation results of the previous work and the PSDN

compiler, including the PDG of SDNet IR. In Figure 5.3a, the match functions (Lookups

in SDNet IR) are not parallelized as described in Figure 5.2. However, in Figure 5.3b, all

the match functions are parallelized. Table decomposition and prefetching the match

functions allow the parallelization opportunity to the PSDN compiler, improving packet

processing latency.

5.1.3 Resource Utilization

This study measures the resource utilization of the synthesized programs in terms of

lookup tables (LUTs; representing the number of combinational logics, not packet pro-

cessing tables), registers, and memory. The synthesized programs are installed on the

NetFPGA-SUME board, which is equipped with a Xilinx xc7vx690t FPGA module. Fig-

ure 5.4 shows the resource utilization percentages for each unit. Compared to previous

work, the PSDN compiler reduces resource usage by 3.5% on average, as measured by

the geometric mean.

In Figure 5.4a, table decomposition and function-level pipeline scheduling reduce

the usage of combinational logic (LUTs) compared to the previous work. Decomposing

tables reduces the number of conditional branches by executing separate action func-

tions in parallel, thereby decreasing combinational logic usage. Although the function

fusion schememerges functions and introduces additional conditional branches, result-

77

0%

5%

10%

15%

20%

25%

INT Learning

Switch

Switch

Calc.

TCP

Monitor

Basic

FRED

Heavy

Hitter

Flow

Rate

U
ti

li
za

ti
o

n
 (

%
)

Previous work Pipeline scheduling Pipeline scheduling + Function fusion

(a) LUTs

0%

5%

10%

15%

20%

25%

30%

35%

INT Learning

Switch

Switch

Calc.

TCP

Monitor

Basic

FRED

Heavy

Hitter

Flow

Rate

U
ti

li
za

ti
o

n
 (

%
)

Previous work Pipeline scheduling Pipeline scheduling + Function fusion

(b) Registers

0%

10%

20%

30%

40%

50%

INT Learning

Switch

Switch

Calc.

TCP

Monitor

Basic

FRED

Heavy

Hitter

Flow

Rate

U
ti

li
za

ti
o

n
 (

%
)

Previous work Pipeline scheduling Pipeline scheduling+ Function fusion

(c) Memory

Figure 5.4: Resource utilization

78

0

1

2

3

4

5

6

7

8

Learning

Switch

INT Switch

Calc.

TCP

Monitor

T
h
ro

u
g
h
p

u
t

(G
b
p
s)

Previous work PSDN compiler

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

(a) Throughput

0

2

4

6

8

10

12

14

16

Learning

Switch

INT Switch

Calc.

TCP

Monitor

#
 P

ac
k
et

s
(M

b
p

s)

Previous work PSDN compiler

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

(b) The number of packets

Figure 5.5: Throughput and the number of processed packets

79

ing in slightly higher LUT usage than without fusion, the PSDN compiler still achieves a

3.07% reduction in LUT usage on average compared to the previous methods.

Regarding register usage (Figure 5.4b), table decomposition initially increases the

number of registers used compared to previous work. Each functionmust transfer data

to subsequent functions in the pipeline, which consumes additional registers for data

storage. Despite the increase in register usage due to the creation of more functions, ap-

plying the function fusion scheme to the decomposed pipeline allows the PSDN compiler

to reduce register usage by 4.29% on average compared to the previous work.

In Figure 5.4c, pipeline scheduling reduces memory (BRAM) usage compared to the

previous work. Memory utilization is related to the internal synchronization buffers

required for match functions and extern functions. By placing independent match and

extern functions into the same pipeline stage, pipeline scheduling reduces the need for

synchronization buffers. As a result, the PSDN compiler decreases memory resource

usage by 3.13% on average compared to the previous methods.

5.1.4 Throughput

Figure 5.5 shows throughput and the number of processed packets of 4 programs com-

piled by previous work and the PSDN compiler. The results show that the compiled pro-

grams by the PSDN compiler have equal performance of throughput to the programs by

the previous work. While Figure 5.5 does not evaluate all benchmarks, the throughput

is the same in both the previous work and PSDN.

The network provider should install duplicate programs on the switch to increase

the throughput of a network switch program. To do this, the size of the network switch

80

program should be reduced. The PSDN compiler reduces the resource usage of P4 pro-

grams, so there are opportunities to increase the throughput of the programs by duplica-

tion. This work further evaluates the impacts of reducing resource usage on throughput

as future work.

5.2 TeMCO Compiler

5.2.1 Evaluation Setup

This study implements a prototype compiler for TeMCOusing PyTorch 2.2 [57] and fused

kernels (Section 3.2) with CUDA and evaluates performance on an RTX 4090 GPU. The

benchmark set includes image classification models such as AlexNet [42], VGG [43],

ResNet [44], and DenseNet [45], as well as the image segmentation model UNet [46].

The ILSVRC 2012 [77] dataset is used for image classification, while the Carvana dataset

is used for image segmentation.

This work applies Tucker decomposition [47] to the 10models with a decomposition

ratio of 0.1, using these decomposedmodels as the baseline, referred to asDecomposed

in the subsequent graphs. Since AlexNet and VGG do not have skip connections, only ac-

tivation fusion is applied to thesemodels, which are labeled as Fusion. For models with

skip connections, such as ResNet, DenseNet, and UNet, both skip connection optimiza-

tion and activation fusion are applied. The effects on memory usage and latency of skip

connection optimization with and without activation fusion are evaluated, denoted as

Skip-Opt and Skip-Opt+Fusion, respectively.

81

5.2.2 Peak Memory Usage

This studymeasures the peakmemory usage during end-to-end inference for 10models

using 4-batch and 32-batch inference. Figure 5.6 illustrates the peak memory usage by

weights and internal tensors. Compared to the original models, this work achieves a

75.7% reduction in memory usage for internal tensors on average.

For AlexNet and VGG, the TeMCO optimized models significantly benefit from ac-

tivation layer fusion, reducing internal tensor memory usage by 49.4% and 90.7%, re-

spectively. Because activation layer fusion skips allocation of internal tensors and uses

reduced tensors, the peak memory usage is proportionally reduced with the designated

decompression ratio.

In the case of ResNet, the TeMCOcompiler reduces the internal tensormemoryusage

by 30.7%. ResNet’s deep skip connections result in a high amount of computation due

to replay-dependent restore layers. Skip connection optimization selectively enhances

skip connections based on their included operations to mitigate the computation over-

heads of copying the restore layers.

DenseNet shows a 54.0% reduction in internal tensor size, owing to its numerous

skip connections. However, DenseNet’s restore operations mainly involve lconv and

ReLU, which are simpler. While copying the restore layers of the skip connections re-

quires more memory spaces on weight tensors, skip connection optimization, and ac-

tivation layer fusion reduce the memory usage of internal tensors. Because DenseNet

has numerous skip connections, skip connection optimization takes a large portion of

reducing internal tensor size.

82

0

100

200

300

400

500

600
D

ec
o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

alex 11 13 16 19 50 121 169 201

net vgg resnet densenet unet

P
ea

k
 M

em
o

ry
 U

sa
g
e

(M
B

) Weight Tensor Size

Internal Tensor Size

1500

0

1250

1000

750

500

250

1513

(a) Batch size 4

0

250

500

750

1000

1250

1500

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

alex 11 13 16 19 50 121 169 201

net vgg resnet densenet unet

P
ea

k
 M

em
o

ry
 U

sa
g
e

(M
B

) Weight Tensor Size

Internal Tensor Size

12000

0

10000

8000

6000

4000

2000

O
u
t

o
f

M
em

o
ry

(b) Batch size 32

Figure 5.6: Peak memory usage

83

For UNet, with its hourglass structure and long-lived skip connections, TeMCO re-

duces internal tensor memory usage by 79.3%. Skip connection optimization in this

context involves copying lconv layers, and concatenation layer transformation fuses

the lconv. Although merging lconv requires additional memory for weight tensors, it

reduces overall peak memory usage by decreasing the internal tensor size of the long-

lived skip connections.

As a result, the TeMCO compiler significantly reduces internal tensor sizes and pre-

vents out-of-memory issues in complex deep-learning architectures.

5.2.3 Inference Time

Figure 5.7 illustrates the end-to-end inference time of the 10 models in terms of CPU

and GPU time. The CPU time is related to the layer function calls and synchronization

overheads, and the GPU time is related to the actual computation of each layer. The

inference time of the models optimized by TeMCO is 1.08× and 1.70× longer than the

decomposition models in 4-batch and 32-batch inference, respectively.

For AlexNet, VGG, and ResNet, activation layer fusion reduces CPU overheads by

decreasing the number of layer calls. However, since the fused layers perform tiled op-

erations for large inputs, GPU overheads increase as the batch size grows. As the model

depth increases, the number of fused layers also increases, leading to greater computa-

tional overheads. In summary, the GPU computational overheads of fused layers pro-

portionally increase over batch size and model depth.

For DenseNet and UNet, skip connection optimization introduces CPU overheads

due to the duplication of restore layers, which increases the number of layer calls. Al-

84

0

5

10

15

20

25
D

ec
o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

alex 11 13 16 19 50 121 169 201

net vgg resnet densenet unet

In
fe

re
n
ce

 T
im

e
(m

s)

CPU Time (ms)

GPU Time (ms)

125

0

100

75

50

25

(a) Batch size 4

0

10

20

30

40

50

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

alex 11 13 16 19 50 121 169 201

net vgg resnet densenet unet

In
fe

re
n
ce

 T
im

e
(m

s)

CPU Time (ms)

GPU Time (ms)

500

0

400

300

200

100

O
u
t

o
f

M
em

o
ry

861

(b) Batch size 32

Figure 5.7: End-to-end inference time

85

0%

20%

40%

60%

80%

100%

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

alex 11 13 16 19 50 121 169 201

net vgg resnet densenet unet

T
o

p
-5

 a
cc

u
ra

cy
 (

%
)

D
ic

e
sc

o
re

 (
%

)

Figure 5.8: Accuracy

though activation layer fusion reduces CPU overheads by minimizing the number of

layer calls, GPU overheads rise with larger batch sizes and deeper models because of

the added complexity and number of fused layers.

5.2.4 Accuracy

Figure 5.8 presents the top-5 accuracy for AlexNet, VGG, ResNet, and DenseNet, along

with the Dice score for UNet. The compiler optimizations implemented by TeMCOmain-

tain the accuracy of the decomposed models because they preserve the original seman-

tics of these models. This evaluation applies decompositions with a decomposition ratio

of 0.1, and direct training is performed.

Previous work [15, 17] proposes ADMM training schemes specifically for decom-

posed models to achieve high accuracy with specified ranks. If a tensor decomposition

86

Table 5.2: Accuracy with ADMM training [15, 17]

Metrics
Base

ratio=0.5 ratio=0.1
Direct ADMM Direct ADMM

Top-1 (%) 93.70 92.37 90.95 81.50 82.61
Top-5 (%) 99.51 99.14 98.99 98.35 98.03

Weight Tensor (MB) 528 492 474
Internal Tensor (MB) 1568 784 172

Total (MB) 2096 1276 646

method offers a pre-trained decomposed model, the TeMCO compiler can effectively re-

duce the peak memory usage of internal tensors without compromising accuracy. This

ability underscores TeMCO’s advantage in preserving model integrity while optimizing

peak memory usage.

This work implements ADMM training of the previous work and evaluates the ac-

curacy and peak memory usage of the VGG-16 model across different compression ra-

tios, as summarized in Table 5.2. Due to the nature of tensor decomposition requir-

ing re-training to restore original accuracy, this work explores both direct training and

ADMM-based training methods using CIFAR-10 datasets.

The findings indicate that higher decomposition ratios yield higher top-1 accuracy,

showing amarginal drop in top-5 accuracy ofwithin 1.5% across both ratios. The TeMCO

compiler effectively reduces the memory footprint of internal tensors at specified de-

composition ratios. The memory usage of weight tensors experiences only a slight de-

crease, primarily because the weight tensors of fully connected layers remain unde-

composed and contribute to the overall model size of VGG. Overall, the TeMCO compiler

achieves a substantial reduction in peak memory usage, amounting to 69.2% and 39.1%

87

with decomposition ratios of 0.1 and 0.5, respectively. This highlights the efficacy of

TeMCO in optimizing memory utilization while maintaining competitive accuracy lev-

els under different decomposition ratio settings.

88

6. Discussion

6.1 PSDN Compiler

The primary objective of this study is to prove the effectiveness of the PSDN compiler in

reducing latency and resource usage in network packet processing. This work indicates

that the PSDN compiler improves performance by reducing the packet processing la-

tency and resource utilization in comparison to traditional methods. These results have

profound implications for the future of high-performance network processing.

The analysis of this work demonstrates that the PSDN compiler achieves an aver-

age 12.1% reduction in latency due to its fine-grained pipeline scheduling and function

fusion techniques. This improvement alignswith the theoretical expectations that finer-

grained optimizations can expose more parallelism within the processing pipeline. Un-

expectedly, this work observes that formodels with fewer parallelizable functions, such

as the TCPMonitor, the performance gains were less pronounced. This suggests that the

benefits of the PSDN compiler are more significant in applications with inherently par-

allel structures.

Compared to previouswork, whichmainly focused on table-level optimizations, this

work highlights the advantages of breaking down functions into smaller, more manage-

able units. This approach allows for more precise control over the scheduling and exe-

89

cution of tasks, as evidenced by the reduced latency and resource usage. The findings

are consistent with the previous work [38], which also emphasized the importance of

fine-grained parallelism in optimizing network processing tasks.

One of the key strengths of this work is the use of the PSDN compiler’s novel ap-

proach to decomposing and scheduling functions. This method not only optimizes per-

formance but also reduces synchronization overheads, a common bottleneck in net-

work processing systems. Additionally, this work provides a comprehensive analysis of

the compiler’s impact across a variety of benchmark programs, demonstrating its broad

applicability and effectiveness.

Despite the promising results, thiswork has several limitations. First, the PSDN com-

piler’s performance was not tested on a wide range of hardware architectures, which

may limit the generalizability of the findings. Additionally, the compiler’s optimization

techniques may not be as effective for applications with highly sequential processing

requirements. Future research should explore the application of the PSDN compiler

across different hardware setups and investigate methods to enhance its performance

in less parallelizable contexts.

Future studies will focus on extending the PSDN compiler’s capabilities to support

more complex network functions and diverse hardware platforms. Extending the PSDN

compiler’s optimizations to the software pipeline and employing the multiple processes

is the start of future work. This extension will make the PSDN compiler be applica-

ble to multi-core CPU-based SmartNICs. Moreover, further investigation into automati-

cally parallelizing the sequential applications or increasing throughputs could yield ad-

ditional performance improvements.

90

In conclusion, the PSDN compiler represents a significant advancement in the field

of network packet processing, offering substantial reductions in latency and resource

usage through its fine-grained optimization techniques. This work underscores the po-

tential of detailed function-level analysis and scheduling to enhance the efficiency of

network processing systems. These findings pave theway for future innovations in com-

piler design and network function optimization.

6.2 TeMCO Compiler

This work aims to prove the TeMCO compiler’s effectiveness in optimizing memory us-

age and processing efficiency for tensor-decomposed deep learning models. This work

demonstrates that TeMCO significantly reduces peak memory usage by applying com-

piler optimization techniques such as skip connection optimization, concatenation layer

transformation, and activation layer fusion. These results indicate that TeMCO offers a

robust solution for handling complex, memory-intensive neural networks, thereby ad-

vancing the capabilities of deep learning deployment on hardware resources.

The evaluation shows that TeMCO reduces internal tensor memory usage by 75.7%

on average across ten models during 4-batch inference (Figure 5.6). This reduction is

particularly pronounced inmodels like VGG andUNet, which benefit fromTeMCO’s abil-

ity to fuse activation layers and optimize skip connections, leading to a 90.7% and 79.3%

reduction in memory usage, respectively. These results align with expectations that

reducing the uses of the internal tensors in non-decomposed activation layers and op-

timizing the skip connections can effectively minimize the memory footprint of tensor-

decomposed deep learning models.

91

However, for models such as ResNet, which have deeper skip connections, TeMCO

achieves a more modest 30.7% reduction in internal tensor memory usage. This is at-

tributed to the extensive computation required to manage the replay-dependent opera-

tions inherent in deep-depth skip connections. Similarly, DenseNet, with its numerous

but simpler skip connections, sawa 54.0% reduction, showcasing TeMCO’s ability to han-

dle varying model architectures effectively.

Compared to previous studies on network optimization and memory management,

our work with TeMCO presents a novel approach that integrates activation fusion and

skip connection optimization. Previous methods have often focused on either optimiz-

ing computational efficiency or managing memory usage but rarely combined these

strategies holistically. TeMCO’s approach of preemptively addressing memory over-

heads through layer fusion and efficient handling of skip connections places it in a

unique position among contemporary optimization techniques.

The reductions in memory usage observed with TeMCO are consistent with find-

ings from similar studies that advocate for tensor decomposition and layer fusion as

effective means to optimize resource usage in deep learning models. For example, tech-

niques employed in AlexNet and VGG, where activation layers are fused, corroborate

the significant reductions inmemory usage due to fewer active layers at any given time.

One of the key strengths of TeMCO is its ability to maintain the accuracy of tensor-

decomposed models while substantially reducing their memory requirements. In Fig-

ure 5.8, TeMCO preserves the accuracies of the decomposed models. If the tensor de-

composition gives a high-accuracy model with sophisticated training methods [15, 16],

TeMCO preserves their accuracy and reduces the peak memory usage.

92

Additionally, TeMCO’s approach to skip connection optimization and activation fu-

sion allows it to be applied broadly across various model architectures, making it a ver-

satile tool in the deep learning optimization toolkit. TeMCO also has concatenation layer

transform schemes to apply activation layer fusion on broader structures. This versatil-

ity is evident in its consistent performance across models with different structures and

levels of complexity.

Despite the significant improvements in memory usage and efficiency, there are

limitations to the TeMCO compiler. The increase in GPU overheads for deeper models

and larger batch sizes due to the fused kernels performing tiled operations highlights

a trade-off between memory savings and computational cost. For models with exten-

sive skip connections or deep architectures, the complexity added by managing replay

operations can limit the extent of memory reduction achievable.

Furthermore, while TeMCO effectively reduces memory usage, the impact on real-

time performance, such as inference latency, was not comprehensively evaluated in this

study. Future work should investigate how these memory optimizations translate into

actual runtime improvements in deployment scenarios.

Future research could explore extending TeMCO’s capabilities to support dynamic

batch sizes and adaptive layer fusion techniques that adjust based on real-time resource

availability andworkload characteristics. Additionally, integratingmachine learning al-

gorithms to predict optimal fusion strategies for different types ofmodels could enhance

TeMCO’s efficiency and broaden its applicability.

Investigating TeMCO’s performance in real-time applications and on a wider range

of hardware platforms, including edge devices, would provide deeper insights into its

93

practical deployment potential. Moreover, exploring the integration of TeMCO with

other compiler optimization techniques could yield further reductions inmemory usage

and computational overheads.

In conclusion, the TeMCO compiler represents a significant advancement in the op-

timization of deep learning models, offering substantial reductions in memory usage

without sacrificing accuracy. By leveraging activation layer fusion and skip connection

optimization, TeMCO effectively addresses the challenges posed by memory-intensive

neural networks. These findings underscore the potential of TeMCO to enhance the de-

ployment of memory-intensive deep learning models, paving the way for future inno-

vations in compiler design and model optimization.

94

7. Related Work

7.1 Network Compilers

Compilers and languages for network packet processing [78, 79, 80] provide tools for

writing and optimizing packet processing programs. Aspen [78] is a language that sup-

ports concurrency in network server applications. Code reuse in SDN programming [79,

80] simplifies network programming by offering reusable building blocks. This study

uses the P4 language [2] as a frontend language, but the proposed parallelizationmethod

can be applied to any language with packet processing table pipeline semantics.

Previous research targeting RISC-based network processors has proposed compiler

optimizations. These optimizations include register allocation [81, 82, 83], bit-level in-

struction partitioning [84], and resolving bank conflicts [85]. Although this work does

not specifically target RISC network processors, it aims to improve the performance of

CPU-based multi-core packet processors through parallelization.

Several studies have focused on optimizing packet parsers through compilers [86,

87, 88]. While packet parsers are part of the programmable data plane, their latency

is generally shorter than that of the table pipeline, as discussed in Section 2.1.2. This is

because parsers mainly read packet header values to identify protocol types, whereas

the table pipeline reads and modifies packet headers and metadata. The table pipeline

95

is the primary bottleneck in the programmable data plane, and this work focuses on

optimizing the pipeline to minimize overall latency.

To increase throughput in packet processing applications, researchers have pro-

posed compilers that leverage application partitioning algorithms [89, 90, 91]. These

implementations partition imperative packet processing programs into basic blocks and

create pipelines to enhance throughput. Similarly, this work proposes table decomposi-

tion but specifically exploits the characteristics of match and action functions and em-

ploys the compiler’s static analysis and optimizations.

Jose et al. [38] have adopted parallelization to optimize the latency of P4 [2] packet

processing applications. Their compiler maps P4 logical tables into physical tables on

packet processing architectures [11, 13]. This approach uses a table dependency graph

to identify data dependencies and employs Integer Linear Programming (ILP) to map

logical tables to physical tables. While their compiler schedules at the table level, the

compiler in this work decouples match and action functions from tables and schedules

them into the pipeline in a fine-grained manner.

P4FPGA [37] is a rapid prototyping compiler that translates P4 programs into Blue-

spec System Verilog [92, 93] programs. One of its approaches to reducing latency is co-

locating independent instructions within the same pipeline stage. Although this work

uses a similar method in the function fusion scheme, P4FPGA does not address the re-

ordering and mapping of packet processing tables into the pipeline while preserving

table-level dependencies. In other words, P4FPGA focuses only on intra-table optimiza-

tion, where the table is the optimization unit, whereas this work supports both intra-

and inter-table optimization, where the matches and actions are the optimization units.

96

Previous research on programmable ASIC compilers [94, 95, 96] aims to overcome

the limitations of chip-specific languages and architectures. Gao et al. [94] use domain-

specific synthesis techniques to accelerate compilation and target multiple backends

through a pipeline description language. To support hardware-independent program-

ming, 𝜇P4 [95] increases the level of abstraction in target-specific packet processing

pipelines and configurations. Lyra [96] provides a ”one-big-pipeline” abstraction, allow-

ing programmers to express their algorithms conveniently and generate chip-specific

code for multi-vendor switches.

Recent publication [97] shows the automatic parallelization of network functions.

This publication proposes a scheme that distributes and parallelizes a network program

to multiple cores. While the previous work targets the parallelization of a program, this

work focuses on the parallelization of functional units within the program. Further-

more, the previous work uses CPU-based network virtualization, but this work synthe-

sizes the optimized network program into FPGA-based network switches.

7.2 Tensor Decomposition

Many tensor decomposition methods applied to deep learning models aim to achieve

speedups and reduce computational costs while ensuring that any resulting accuracy

drops remain within acceptable tolerances of the models. Previous research has ex-

plored techniques such as rank-1 expansion [98], SVD [99, 100], CP decomposition [101],

and Tucker decomposition [15, 16]. Additionally, several studies [102, 103] have com-

bined these decompositionmethods to compress and accelerate convolution neural net-

work (CNN) models.

97

Tensor-Train (TT) [56, 104, 105] and Tensor-Ring (TR) [106] decomposition aremeth-

ods that decompose high-dimensional tensors into sequences of low-dimensional ten-

sors. Compared to the previous decomposition, TT andTRdecomposition achieve higher

model compression by using low-dimensional tensors. For example, TT decomposition

constructs 3D weight tensors for core convolution layers, while Tucker decomposition

generates a 4D weight tensor for a core convolution layer. Additionally, previous stud-

ies [107, 108] have proposed deep learning accelerators tailored for these specific de-

composition methods.

Ideally, TeMCO’s optimization can be applied to the models with various tensor de-

compositionmethods [47, 56, 101] that decompose a convolution with two factor matrix

convolutions: fconv and lconv. As described in Section 2.2.1, TeMCO’s optimization deals

with fconv and lconv, and it does not care about the type of core convolutions. Therefore,

if the decomposed convolution sequence has fconv and lconv, such as CP, Tucker, and TT

decomposition, TeMCO’s optimization can be applied to reduce the peak memory usage

of internal tensors.

Previous tensor decomposition-based model compression schemes [15, 104] focus

on reducing the FLOPS of a deep learning model but not reducing the memory usage.

The previouswork focuses on selecting appropriate ranks to satisfy higher accuracy and

lower FLOPS. On the other hand, this work proposes compiler optimizations to reduce

memory usage of the tensor-decomposed models. The TeMCO compiler can accept the

decomposed models generated by the previous work to retarget from reducing FLOPS

to reducing peak memory usage.

98

7.3 DNN Framework for Memory-Efficient Deep Learning

Previous studies [109, 110, 111, 112, 113] propose approaches aimed at reducing mem-

ory usage in deep learning devices through kernel division techniques. These methods

involve partitioning layers into iterative sub-operations and accumulating their out-

comes into unified results. By doing so, these techniques effectively address the con-

straints posed by limited scratchpad memory on accelerators.

The kernel division techniques resemble activation layer fusion in tiling. The fused

layer tiles the operations of lconv - ReLU - fconv and uses small tiled memory space in-

stead of internal tensor space. While this work implements the fused layer in GPU, it

also aims to implement fused layers in CPU and accelerators in future work.

Earlier researches [69, 71, 72, 73] propose layer scheduling techniques aimed atmin-

imizing memory usage. These researches show that execution orders of layers affect

the memory usage of internal tensors. With their observations, this work implements

scheduling of restore layers in Section 4.3. While finding the optimum scheduling of

minimum memory usage is an open problem, this work can improve the scheduling

algorithms by applying other heuristics.

On the point of TinyML,wherememory constraints present a substantial bottleneck,

quantization-based optimization [72, 114, 115] stands out as a model compression tech-

nique that reduces the bit-width of the model at the expense of accuracy. Quantization

is effective in reducing both memory usage and computational overhead. However, de-

spite these optimizations, the memory consumption attributable to internal tensors re-

mains significant. Because tensor decomposition can be applied orthogonally on quan-

99

tized models, tensor decomposition plus quantization can reduce the memory usage by

internal tensors.

In the domain of deep learning training, internal tensor compression has also been a

subject of discussion. Previouswork [116, 117] introduces compressed training schemes

to compress internal tensors between inference andweight updates. However, the com-

pressed tensors should be decompressed to proceed with further layer operations. This

means the memory usage can be reduced when the tensor is compressed, but the mem-

ory usage will increase when the tensor gets decompressed. Compared to the previous

work, the TeMCO compiler achieves the computations with reduced tensors by activa-

tion layer fusion, not to restore these reduced tensors to the corresponding internal

tensors. Therefore, the TeMCO compiler’s approach can significantly reduce the peak

memory usage of internal tensors.

100

8. Conclusion

Thisworkproposes a split-schedule-merge scheme for domain-specific programs and in-

troduces two prototype compilers named PSDN and TeMCO that analyze the abstracted

domain-specific programs in a fine granularity and optimize the programs with fine-

grained functional units to achieve their purposes. The PSDN compiler splits match-

action tables intomatch and action functions and performs fine-grained scheduling and

merging of these functions to reduce packet processing latency. The TeMCO compiler

splits decomposed convolution sequences, extracts fconv and lconv of decomposed deep

learning models, schedules the execution order of the layers in skip connections, and

merges the layers to reduce peak memory usage of internal tensors.

The PSDN compiler decouples match functions and action functions and performs

dependency analysis on these functions. With the programdependence graph, the PSDN

compiler schedules the execution of the functions, placing the functions that have no de-

pendencies on each other in parallel. Then, the PSDN compiler fuses action functions to

minimize synchronization overheads. Compared to previous work, the PSDN compiler

reduces packet processing latency by 12.1% and resource usage by 3.5%.

The TeMCO compiler optimizes tensor-decomposed deep learning models with skip

connection optimization and activation layer fusion. To achieve skip connection opti-

mization, the TeMCO compiler analyzes the program dependence graph of a model and

101

finds a sub-graph of restore layers. The TeMCO compiler optimizes the execution order

of the sub-graph to reduce memory usage and checks computation and memory over-

heads. If the overheads are not significant, the TeMCO compiler copies the restore layers

and replaces the skip connection with the corresponding reduced tensor. In terms of ac-

tivation layer fusion, the TeMCO compiler fuses sequences of lconv - activation - fconv,

not to allocate internal tensors used in activation layers. To apply activation layer fusion

in broader structures, the TeMCO compiler applies concatenation layer transformation

and generates the sequences of lconv - activation - fconv. Compared to the decomposed

models, themodel optimizedbyTeMCOuses less internal tensormemoryusage by 75.7%

with inference time overhead of between 1.08× and 1.70× across 4 to 32 batch sizes.

The proposed PSDNand TeMCO compiler utilizes hidden opportunities of abstracted

and coarse-grained domain-specific programswith fine-grained compiler optimizations

that use split-schedule-merge schemes. This work successfully reduces computational

andmemory overheads in network programming anddeep learningfields through com-

piler optimizations. Thisworkwill extend the split-schedule-merge scheme to other spe-

cialized domains like large languagemodels or high-performance computing. Thiswork

will contribute to server-side high-performance computing using GPUs and SmartNICs,

as well as domain-specific programs with divisible abstractions.

102

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus

Networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar.

2008.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,

D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4: Programming Protocol-

independent Packet Processors,” SIGCOMM Computer Communication Review,

vol. 44, no. 3, pp. 87–95, Jul. 2014.

[3] M. Gouda and X.-Y. Liu, “Firewall Design: Consistency, Completeness, and Com-

pactness,” in 24th International Conference on Distributed Computing Systems,

2004. Proceedings., 2004, pp. 320–327.

[4] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed Packet Switching for Local

Computer Networks,” Commun. ACM, vol. 19, no. 7, pp. 395–404, Jul. 1976.

[5] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable High Speed IP

Routing Lookups,” in Proceedings of the ACM SIGCOMM ’97 Conference on Appli-

103

cations, Technologies, Architectures, and Protocols for Computer Communication,

ser. SIGCOMM ’97, Cannes, France: Association for Computing Machinery, 1997,

pp. 25–36, ISBN: 0-89791-905-X.

[6] C. E. Hopps, “Analysis of an Equal-CostMulti-PathAlgorithm,” Internet Engineer-

ing Task Force, RFC 2992, Nov. 2000.

[7] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and J. Rexford,

“PISCES: A Programmable, Protocol-Independent Software Switch,” in Proceed-

ings of the 2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16, Florianopolis,

Brazil: ACM, 2016, pp. 525–538, ISBN: 978-1-4503-4193-6.

[8] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Herbert, D. Ah-

ern, andD.Miller, “The eXpress Data Path: Fast Programmable Packet Processing

in the Operating System Kernel,” in Proceedings of the 14th International Confer-

ence on Emerging Networking EXperiments and Technologies, ser. CoNEXT ’18,

Heraklion, Greece: ACM, 2018, pp. 54–66, ISBN: 978-1-4503-6080-7.

[9] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang,

J. Stringer, P. Shelar, K. Amidon, and M. Casado, “The Design and Implementa-

tion of Open vSwitch,” in 12th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 15), Oakland, CA, May 2015, pp. 117–130, ISBN: 978-1-

931971-218.

104

[10] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore, “NetFPGA SUME:

Toward 100 Gbps as Research Commodity,” IEEE Micro, vol. 34, no. 5, pp. 32–41,

Sep. 2014.

[11] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica,

and M. Horowitz, “Forwarding Metamorphosis: Fast Programmable Match-

action Processing in Hardware for SDN,” in Proceedings of the ACM SIGCOMM

2013 Conference on SIGCOMM, ser. SIGCOMM ’13, Hong Kong, China: ACM, 2013,

pp. 99–110, ISBN: 978-1-4503-2056-6.

[12] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger, G. Mendel-

son, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and T. Edsall, “dRMT: Disag-

gregated Programmable Switching,” in Proceedings of the Conference of the ACM

Special Interest Group on Data Communication, ser. SIGCOMM ’17, Los Angeles,

CA, USA: ACM, 2017, pp. 1–14, ISBN: 978-1-4503-4653-5.

[13] R. Ozdag, “Intel®Ethernet Switch FM6000 Series-SoftwareDefinedNetworking,”

Intel Cooperation, 2012.

[14] H. Kim, M. U. K. Khan, and C.-M. Kyung, “Efficient Neural Network Compres-

sion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), Jun. 2019.

105

[15] L. Xiang, M. Yin, C. Zhang, A. Sukumaran-Rajam, P. Sadayappan, B. Yuan, and

D. Tao, “TDC: Towards Extremely Efficient CNNs on GPUs via Hardware-Aware

Tucker Decomposition,” in Proceedings of the 28th ACM SIGPLAN Annual Sym-

posium on Principles and Practice of Parallel Programming, ser. PPoPP ’23, Mon-

treal, QC, Canada: Association for ComputingMachinery, 2023, pp. 260–273, ISBN:

979-8-4007-0015-6.

[16] M. Yin, H. Phan, X. Zang, S. Liao, and B. Yuan, “BATUDE: Budget-Aware Neural

Network Compression Based on TuckerDecomposition,”Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 36, no. 8, pp. 8874–8882, Jun. 2022.

[17] M. Yin, Y. Sui, S. Liao, and B. Yuan, “Towards Efficient Tensor Decomposition-

Based DNNModel CompressionWith Optimization Framework,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

Jun. 2021, pp. 10 674–10 683.

[18] Y. Yang, D. Krompass, and V. Tresp, “Tensor-Train Recurrent Neural Networks

for Video Classification,” in Proceedings of the 34th International Conference on

Machine Learning, D. Precup and Y. W. Teh, Eds., ser. Proceedings of Machine

Learning Research, vol. 70, PMLR, Aug. 2017, pp. 3891–3900.

106

[19] Y. Pan, J. Xu, M. Wang, J. Ye, F. Wang, K. Bai, and Z. Xu, “Compressing Recurrent

Neural Networks with Tensor Ring for Action Recognition,” Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 4683–4690, Jul. 2019.

[20] Y. He, X. Zhang, and J. Sun, “Channel Pruning for Accelerating Very Deep Neu-

ral Networks,” in Proceedings of the IEEE International Conference on Computer

Vision (ICCV), Oct. 2017.

[21] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning Filters for Effi-

cient ConvNets,” in International Conference on Learning Representations, 2017.

[22] Z. Huang and N. Wang, “Data-Driven Sparse Structure Selection for Deep Neu-

ral Networks,” in Proceedings of the European Conference on Computer Vision

(ECCV), Sep. 2018.

[23] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning Efficient Convolu-

tional Networks Through Network Slimming,” in Proceedings of the IEEE Inter-

national Conference on Computer Vision (ICCV), Oct. 2017.

[24] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the Value of Net-

work Pruning,” in International Conference on Learning Representations, 2019.

107

[25] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A Filter Level Pruning Method for Deep

Neural Network Compression,” in Proceedings of the IEEE International Confer-

ence on Computer Vision (ICCV), Oct. 2017.

[26] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard, “Adaptive Quan-

tization for Deep Neural Network,” Proceedings of the AAAI Conference on Arti-

ficial Intelligence, vol. 32, no. 1, Apr. 2018.

[27] J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang, and X.-s. Hua, “Quanti-

zation Networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), Jun. 2019.

[28] C. Zhu, S. Han, H. Mao, andW. J. Dally, “Trained Ternary Quantization,” in Inter-

national Conference on Learning Representations, 2017.

[29] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D.

Kalenichenko, “Quantization and Training of Neural Networks for Efficient

Integer-Arithmetic-Only Inference,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Jun. 2018.

[30] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-Aware Automated

Quantization With Mixed Precision,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), Jun. 2019.

108

[31] D. Lin, S. Talathi, and S. Annapureddy, “Fixed Point Quantization of Deep Convo-

lutional Networks,” in Proceedings of The 33rd International Conference on Ma-

chine Learning, M. F. Balcan and K. Q. Weinberger, Eds., ser. Proceedings of Ma-

chine Learning Research, vol. 48, New York, New York, USA: PMLR, Jun. 2016,

pp. 2849–2858.

[32] J. H. Cho and B. Hariharan, “On the Efficacy of Knowledge Distillation,” in Pro-

ceedings of the IEEE/CVF International Conference onComputer Vision (ICCV), Oct.

2019.

[33] F. Tung and G. Mori, “Similarity-Preserving Knowledge Distillation,” in Proceed-

ings of the IEEE/CVF International Conference on Computer Vision (ICCV), Oct.

2019.

[34] B. Zhao, Q. Cui, R. Song, Y. Qiu, and J. Liang, “Decoupled Knowledge Distillation,”

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR), Jun. 2022, pp. 11 953–11 962.

[35] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and H.

Ghasemzadeh, “Improved Knowledge Distillation via Teacher Assistant,”

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04,

pp. 5191–5198, Apr. 2020.

109

[36] B. Minnehan and A. Savakis, “Cascaded Projection: End-To-End Network Com-

pression and Acceleration,” in Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), Jun. 2019.

[37] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster, and H. Weath-

erspoon, “P4FPGA: A Rapid Prototyping Framework for P4,” in Proceedings of

the Symposium on SDN Research, ser. SOSR ’17, Santa Clara, CA, USA: ACM, 2017,

pp. 122–135, ISBN: 978-1-4503-4947-5.

[38] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling Packet Programs to

Reconfigurable Switches,” in 12th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI 15), Oakland, CA: USENIX Association, May 2015,

pp. 103–115, ISBN: 978-1-931971-218.

[39] Xilinx, P4-SDNet User Guide, https : / / www . xilinx . com / support /

documentation / sw _ manuals / xilinx2018 _ 2 / ug1252 - p4 - sdnet . pdf,

2018.

[40] G. Brebner and W. Jiang, “High-Speed Packet Processing using Reconfigurable

Computing,” IEEE Micro, vol. 34, no. 1, pp. 8–18, Jan. 2014.

[41] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The P4->NetFPGAWork-

flow for Line-Rate Packet Processing,” in Proceedings of the 2019 ACM/SIGDA In-

110

ternational Symposium on Field - Programmable Gate Arrays, ser. FPGA ’19, Sea-

side, CA, USA: ACM, 2019, pp. 1–9, ISBN: 978-1-4503-6137-8.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks,” in Advances in Neural Information Processing

Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25, Curran

Associates, Inc., 2012.

[43] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-

Scale Image Recognition,” in 3rd International Conference on Learning Represen-

tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-

ings, Y. Bengio and Y. LeCun, Eds., 2015.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-

nition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Jun. 2016.

[45] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected

convolutional networks,” in Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), Jul. 2017.

[46] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for

Biomedical Image Segmentation,” in Medical Image Computing and Computer-

111

Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and

A. F. Frangi, Eds., Cham: Springer International Publishing, 2015, pp. 234–241,

ISBN: 978-3-319-24574-4.

[47] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psy-

chometrika, vol. 31, no. 3, pp. 279–311, 1966.

[48] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B.

O’Connor, P. Radoslavov, W. Snow, and G. Parulkar, “ONOS: Towards an Open,

Distributed SDN OS,” in Proceedings of the Third Workshop on Hot Topics in

Software Defined Networking, ser. HotSDN ’14, Chicago, Illinois, USA: ACM, 2014,

pp. 1–6, ISBN: 978-1-4503-2989-7.

[49] J. Hyun, N. Van Tu, and J. W.-K. Hong, “Towards Knowledge-Defined Network-

ing using In-band Network Telemetry,” in NOMS 2018 - 2018 IEEE/IFIP Network

Operations and Management Symposium, Apr. 2018, pp. 1–7.

[50] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making Stateful Layer-

4 Load Balancing Fast and Cheap Using Switching ASICs,” in Proceedings of the

Conference of the ACM Special Interest Group on Data Communication, ser. SIG-

COMM ’17, Los Angeles, CA, USA: ACM, 2017, pp. 15–28, ISBN: 978-1-4503-4653-5.

112

[51] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-Network Com-

putation is a Dumb IdeaWhose Time Has Come,” in Proceedings of the 16th ACM

Workshop on Hot Topics in Networks, ser. HotNets-XVI, Palo Alto, CA, USA: ACM,

2017, pp. 150–156, ISBN: 978-1-4503-5569-8.

[52] H. Song, “Protocol-oblivious Forwarding: Unleash the Power of SDN Through a

Future-proof Forwarding Plane,” in Proceedings of the Second ACM SIGCOMM

Workshop on Hot Topics in Software Defined Networking, ser. HotSDN ’13, Hong

Kong, China: ACM, 2013, pp. 127–132, ISBN: 978-1-4503-2178-5.

[53] S. Li, D. Hu, W. Fang, S. Ma, C. Chen, H. Huang, and Z. Zhu, “Protocol Oblivious

Forwarding (POF): Software-Defined Networking with Enhanced Programma-

bility,” IEEE Network, vol. 31, no. 2, pp. 58–66, Mar. 2017.

[54] H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford, R. Soulé, and H.

Weatherspoon, “Whippersnapper: A P4 Language Benchmark Suite,” in Proceed-

ings of the Symposium on SDNResearch, ser. SOSR ’17, Santa Clara, CA, USA: ACM,

2017, pp. 95–101, ISBN: 978-1-4503-4947-5.

[55] F. L. Hitchcock, “The Expression of a Tensor or a Polyadic as a Sum of Products,”

Journal of Mathematics and Physics, vol. 6, no. 1-4, pp. 164–189, 1927.

113

[56] I. V. Oseledets, “Tensor-Train Decomposition,” SIAM Journal on Scientific Com-

puting, vol. 33, no. 5, pp. 2295–2317, 2011.

[57] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch:

an imperative style, high-performance deep learning library,” in Proceedings of

the 33rd International Conference on Neural Information Processing Systems, Red

Hook, NY, USA: Curran Associates Inc., 2019, pp. 8026–8037.

[58] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,

B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,

“TensorFlow: A System for Large-Scale Machine Learning,” in 12th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI 16), Savannah,

GA: USENIX Association, Nov. 2016, pp. 265–283, ISBN: 978-1-931971-33-1.

[59] Barefoot, P4_16 reference compiler, https://github.com/p4lang/p4c, 2020.

[60] Xilinx, SDNet Packet Processor User Guide, https : / / www . xilinx . com /

support / documentation / sw _ manuals / xilinx2018 _ 2 / ug1012 - sdnet -

packet-processor.pdf, 2018.

114

[61] R. Cytron, J. Ferrante, and V. Sarkar, “Compact Representations for Control De-

pendence,” inProceedings of theACMSIGPLAN1990Conference on Programming

LanguageDesign and Implementation, ser. PLDI ’90,White Plains, NewYork, USA:

ACM, 1990, pp. 337–351, ISBN: 0-89791-364-7.

[62] W. Pugh, “The Omega Test: A Fast and Practical Integer Programming Algorithm

forDependenceAnalysis,” inProceedings of the 1991ACM/IEEEConference on Su-

percomputing, ser. Supercomputing ’91, Albuquerque, New Mexico, USA: ACM,

1991, pp. 4–13, ISBN: 0-89791-459-7.

[63] Xilinx, Exact Match Binary CAM Search IP for SDNet, https://www.xilinx.

com/support/documentation/ip_documentation/cam/pg189-cam.pdf,

2019.

[64] Xilinx, Ternary Content AddressableMemory (TCAM) Search IP for SDNet, https:

//www.xilinx.com/support/documentation/ip_documentation/tcam/

pg190-tcam.pdf, 2017.

[65] Xilinx, Longest Prefix Match (LPM) Search IP for SDNet, https://www.xilinx.

com/support/documentation/ip_documentation/lpm/pg191-lpm.pdf,

2017.

[66] NVIDIA, CUDA, https://developer.nvidia.com/cuda-toolkit, 2024.

115

[67] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle, T.

Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: Scaling Compiler Infrastruc-

ture for Domain Specific Computation,” in Proceedings of the 2021 IEEE/ACM In-

ternational Symposium on Code Generation and Optimization, ser. CGO ’21, Vir-

tual Event, Republic of Korea: IEEE Press, 2021, pp. 2–14, ISBN: 9781728186139.

[68] J. Reed, Z. DeVito, H. He, A. Ussery, and J. Ansel, “Torch.fx: Practical program

capture and transformation for deep learning in python,” in Proceedings of Ma-

chine Learning and Systems, D. Marculescu, Y. Chi, and C. Wu, Eds., vol. 4, 2022,

pp. 638–651.

[69] J. Lee, S. Jeong, S. Song, K. Kim, H. Choi, Y. Kim, and H. Kim, “Occamy: Memory-

efficient GPU Compiler for DNN Inference,” in 2023 60th ACM/IEEE Design Au-

tomation Conference (DAC), IEEE, 2023, pp. 1–6.

[70] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,

andTools (2ndEdition). USA: Addison-Wesley LongmanPublishing Co., Inc., 2006,

p. 608, ISBN: 0321486811.

[71] L. Zhu, L. Hu, J. Lin, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han, “PockEngine:

Sparse and Efficient Fine-tuning in a Pocket,” in Proceedings of the 56th Annual

IEEE/ACM International Symposium on Microarchitecture, 2023, pp. 1381–1394.

116

[72] E. Liberis and N. D. Lane, Pex: Memory-efficient Microcontroller Deep Learning

through Partial Execution, 2023. arXiv: 2211.17246 [cs.LG].

[73] Y. Pisarchyk and J. Lee, Efficient Memory Management for Deep Neural Net Infer-

ence, 2020. arXiv: 2001.03288 [cs.LG].

[74] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural

network function approximation in reinforcement learning,” Neural Networks,

vol. 107, pp. 3–11, 2018, Special issue on deep reinforcement learning.

[75] D. Hendrycks and K. Gimpel, Gaussian Error Linear Units (GELUs), 2023. arXiv:

1606.08415 [cs.LG].

[76] N. G. Organization, P4-NetFPGA-public, https://github.com/NetFPGA/P4-

NetFPGA-public, 2018.

[77] O. Russakovsky, J. Deng,H. Su, J. Krause, S. Satheesh, S.Ma, Z.Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual

Recognition Challenge,” International Journal of Computer Vision (IJCV), pp. 211–

252, 2015.

[78] G. Upadhyaya, V. S. Pai, and S. P. Midkiff, “Expressing and Exploiting Con-

currency in Networked Applications with Aspen,” in Proceedings of the 12th

117

ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, ser. PPoPP ’07, San Jose, California, USA: ACM, 2007, pp. 13–23, ISBN:

978-1-59593-602-8.

[79] H. Eran, L. Zeno, Z. István, andM. Silberstein, “Design Patterns for Code Reuse in

HLS Packet Processing Pipelines,” in 2019 IEEE 27th Annual International Sym-

posium on Field - Programmable Custom ComputingMachines (FCCM), Apr. 2019,

pp. 208–217.

[80] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple: Simplifying SDN

Programming Using Algorithmic Policies,” in Proceedings of the ACM SIGCOMM

2013 Conference on SIGCOMM, ser. SIGCOMM ’13, Hong Kong, China: ACM, 2013,

pp. 87–98, ISBN: 978-1-4503-2056-6.

[81] J. Wagner and R. Leupers, “C Compiler Design for an Industrial Network Proces-

sor,” in Proceedings of the ACMSIGPLANWorkshop on Languages, Compilers and

Tools for Embedded Systems, ser. LCTES ’01, Snow Bird, Utah, USA: ACM, 2001,

pp. 155–164, ISBN: 1-58113-425-8.

[82] J. Kim, S. Jung, Y. Paek, and G.-R. Uh, “Experience with a Retargetable Compiler

for a Commercial Network Processor,” in Proceedings of the 2002 International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems,

ser. CASES ’02, Grenoble, France: ACM, 2002, pp. 178–187, ISBN: 1-58113-575-0.

118

[83] L. George and M. Blume, “Taming the IXP Network Processor,” in Proceedings of

the ACM SIGPLAN 2003 Conference on Programming Language Design and Imple-

mentation, ser. PLDI ’03, San Diego, California, USA: ACM, 2003, pp. 26–37, ISBN:

1-58113-662-5.

[84] S. Carr and P. Sweany, “Automatic Data Partitioning for the Agere Payload Plus

Network Processor,” in Proceedings of the 2004 International Conference on Com-

pilers, Architecture, and Synthesis for Embedded Systems, ser. CASES ’04, Wash-

ington DC, USA: ACM, 2004, pp. 238–247, ISBN: 1-58113-890-3.

[85] X. Zhuang and S. Pande, “Resolving register bank conflicts for a network proces-

sor,” in 2003 12th International Conference on Parallel Architectures and Compi-

lation Techniques, Sep. 2003, pp. 269–278.

[86] J. Santiago da Silva, F.-R. Boyer, and J. P. Langlois, “P4-Compatible High-Level

Synthesis of Low Latency 100 Gb/s Streaming Packet Parsers in FPGAs,” in

Proceedings of the 2018 ACM/SIGDA International Symposium on Field - Pro-

grammable Gate Arrays, ser. FPGA ’18, Monterey, CALIFORNIA, USA: ACM, 2018,

pp. 147–152, ISBN: 978-1-4503-5614-5.

[87] P. Benácek, V. Pu, and H. Kubátová, “P4-to-VHDL: Automatic Generation of 100

Gbps Packet Parsers,” in 2016 IEEE 24th Annual International Symposium on

119

Field-Programmable Custom Computing Machines (FCCM), May 2016, pp. 148–

155.

[88] A. Yazdinejad, A. Bohlooli, and K. Jamshidi, “P4 to SDNet: Automatic Genera-

tion of an Efficient Protocol-Independent Packet Parser on Reconfigurable Hard-

ware,” in 2018 8th International Conference on Computer and Knowledge Engi-

neering (ICCKE), Oct. 2018, pp. 159–164.

[89] J. Dai, B. Huang, L. Li, and L. Harrison, “Automatically Partitioning Packet

Processing Applications for Pipelined Architectures,” in Proceedings of the

2005 ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, ser. PLDI ’05, Chicago, IL, USA: ACM, 2005, pp. 237–248, ISBN:

1-59593-056-6.

[90] M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and R. Ju, “Shangri-La: Achiev-

ing High Performance from Compiled Network Applications While Enabling

Ease of Programming,” in Proceedings of the 2005 ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI ’05, Chicago, IL,

USA: ACM, 2005, pp. 224–236, ISBN: 1-59593-056-6.

[91] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrishnan, G.

Varghese, N. McKeown, and S. Licking, “Packet Transactions: High-Level Pro-

gramming for Line-Rate Switches,” in Proceedings of the 2016 ACM SIGCOMM

120

Conference, ser. SIGCOMM ’16, Florianopolis, Brazil: ACM, 2016, pp. 15–28, ISBN:

978-1-4503-4193-6.

[92] R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high level speci-

fications,” in Proceedings. Second ACM and IEEE International Conference on For-

mal Methods andModels for Co-Design, 2004. MEMOCODE ’04., Jun. 2004, pp. 69–

70.

[93] R. S. Nikhil, “Bluespec: A General-Purpose Approach to High-Level Synthesis

Based on Parallel Atomic Transactions,” in High-Level Synthesis: From Algo-

rithm to Digital Circuit, P. Coussy and A. Morawiec, Eds. Dordrecht: Springer

Netherlands, 2008, pp. 129–146, ISBN: 978-1-4020-8588-8.

[94] X. Gao, T. Kim,M. D.Wong, D. Raghunathan, A. K. Varma, P. G. Kannan, A. Sivara-

man, S. Narayana, and A. Gupta, “Switch Code Generation Using Program Syn-

thesis,” in Proceedings of the Annual Conference of the ACMSpecial Interest Group

onData Communication on theApplications, Technologies, Architectures, andPro-

tocols for Computer Communication, ser. SIGCOMM ’20, Virtual Event, USA: As-

sociation for Computing Machinery, 2020, pp. 44–61, ISBN: 978-1-4503-7955-7.

[95] H. Soni, M. Rifai, P. Kumar, R. Doenges, and N. Foster, “Composing Dataplane

Programs with 𝜇P4,” in Proceedings of the Annual Conference of the ACM Special

Interest Group on Data Communication on the Applications, Technologies, Archi-

121

tectures, and Protocols for Computer Communication, ser. SIGCOMM ’20, Virtual

Event, USA: Association for Computing Machinery, 2020, pp. 329–343, ISBN: 978-

1-4503-7955-7.

[96] J. Gao, E. Zhai, H. H. Liu, R. Miao, Y. Zhou, B. Tian, C. Sun, D. Cai, M. Zhang,

and M. Yu, “Lyra: A Cross-Platform Language and Compiler for Data Plane Pro-

gramming on Heterogeneous ASICs,” in Proceedings of the Annual Conference

of the ACM Special Interest Group on Data Communication on the Applica-

tions, Technologies, Architectures, and Protocols for Computer Communication,

ser. SIGCOMM ’20, Virtual Event, USA: Association for Computing Machinery,

2020, pp. 435–450, ISBN: 978-1-4503-7955-7.

[97] F. Pereira, F. M. Ramos, and L. Pedrosa, “Automatic Parallelization of Software

Network Functions,” in 21st USENIX Symposium on Networked Systems Design

and Implementation (NSDI 24), Santa Clara, CA: USENIX Association, Apr. 2024,

pp. 1531–1550, ISBN: 978-1-939133-39-7.

[98] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up Convolutional Neural

Networks with Low Rank Expansions,” in Proceedings of the British Machine Vi-

sion Conference 2014, ser. BMVC ’24, British Machine Vision Association, 2014,

pp. 1–13.

122

[99] C. Tai, T. Xiao, Y. Zhang, X. Wang, and W. E, “Convolutional Neural Networks

With Low-rank Regularization,” in International Conference on Learning Repre-

sentations, 2016.

[100] L. Liebenwein, A. Maalouf, D. Feldman, and D. Rus, “Compressing Neural Net-

works: Towards Determining the Optimal Layer-wise Decomposition,” vol. 34,

2021, pp. 5328–5344.

[101] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky, “Speeding-up

Convolutional Neural Networks Using Fine-tuned CP-Decomposition,” in Inter-

national Conference on Learning Representations, 2015.

[102] C.-C. Liang and C.-R. Lee, “Automatic Selection of Tensor Decomposition for Com-

pressing Convolutional Neural Networks A Case Study on VGG-type Networks,”

in 2021 IEEE International Parallel and Distributed Processing SymposiumWork-

shops (IPDPSW), 2021, pp. 770–778.

[103] G.Wu, S.Wang, and L. Liu, “Fast Video SummaryGeneration BasedOnLowRank

Tensor Decomposition,” IEEE Access, vol. 9, pp. 127 917–127926, 2021.

[104] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing Neural

Networks,” in Advances in Neural Information Processing Systems, C. Cortes, N.

123

Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28, Curran Associates,

Inc., 2015.

[105] F.-H. Meng, Y. Wu, Z. Zhang, andW. D. Lu, “TT-CIM: Tensor Train Decomposition

for Neural Network in RRAM-Based Compute-in-Memory Systems,” IEEE Trans-

actions on Circuits and Systems I: Regular Papers, vol. 71, no. 3, pp. 1172–1183,

2024.

[106] L. Yuan, C. Li, D. Mandic, J. Cao, and Q. Zhao, “Tensor Ring Decomposition with

Rank Minimization on Latent Space: An Efficient Approach for Tensor Comple-

tion,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01,

pp. 9151–9158, Jul. 2019.

[107] J.-F. Zhang, C.-H. Lu, and Z. Zhang, “TetriX: Flexible Architecture and Optimal

Mapping for TensorizedNeural Network Processing,” IEEE Transactions on Com-

puters, pp. 1–13, 2024.

[108] Y. Gong, M. Yin, L. Huang, J. Xiao, Y. Sui, C. Deng, and B. Yuan, “ETTE: Efficient

Tensor-Train-based Computing Engine for Deep Neural Networks,” in Proceed-

ings of the 50th Annual International Symposium on Computer Architecture,

ser. ISCA ’23, Orlando, FL, USA: Association for Computing Machinery, 2023,

ISBN: 979-8-4007-0095-8.

124

[109] A. Artemev, Y. An, T. Roeder, and M. van der Wilk, “Memory Safe Computations

with XLA Compiler,” in Advances in Neural Information Processing Systems, S.

Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35,

Curran Associates, Inc., 2022, pp. 18 970–18 982.

[110] T. W. Chris Leary, “XLA: TensorFlow, Compiled!” TensorFlow Dev Summit, 2017.

[111] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, “MCUNetV2: Memory-Efficient

Patch-based Inference for Tiny Deep Learning,” in Advances in Neural Informa-

tion Processing Systems, 2021.

[112] H.-S. Zheng, Y.-Y. Liu, C.-F. Hsu, and T. T. Yeh, “StreamNet: Memory-Efficient

Streaming Tiny Deep Learning Inference on the Microcontroller,” vol. 36, 2024.

[113] A. A. Khan, N. A. Rink, F. Hameed, and J. Castrillon, “Optimizing Tensor Contrac-

tions for Embedded Devices with Racetrack Memory Scratch-Pads,” in Proceed-

ings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages,

Compilers, and Tools for Embedded Systems, 2019, pp. 5–18.

[114] S. Jaiswal, R. K. K. Goli, A. Kumar, V. Seshadri, and R. Sharma, “MinUn: Accu-

rate ML Inference on Microcontrollers,” in Proceedings of the 24th ACM SIG-

PLAN/SIGBED International Conference on Languages, Compilers, and Tools for

Embedded Systems, 2023, pp. 26–39.

125

[115] A. Kumar, V. Seshadri, and R. Sharma, “Shiftry: RNN Inference in 2KB of RAM,”

Proceedings of the ACMon Programming Languages, vol. 4, no. OOPSLA, pp. 1–30,

2020.

[116] S. Jin, C. Zhang, X. Jiang, Y. Feng, H. Guan, G. Li, S. L. Song, and D. Tao, “Comet:

A novel memory-efficient deep learning training framework by using error-

bounded lossy compression,” Proc. VLDB Endow., vol. 15, no. 4, pp. 886–899,

Dec. 2021.

[117] J. Chen, L. Zheng, Z. Yao, D.Wang, I. Stoica, M.Mahoney, and J. Gonzalez, “ActNN:

Reducing Training Memory Footprint via 2-Bit Activation Compressed Train-

ing,” in Proceedings of the 38th International Conference on Machine Learning,

M. Meila and T. Zhang, Eds., ser. Proceedings of Machine Learning Research,

vol. 139, PMLR, Jul. 2021, pp. 1803–1813.

126

Abstract in Korean

특수도메인을위한분할-스케줄링-병합을이용한
세분화된컴파일러최적화기법

도메인특화언어는사용자요구를충족시키기위해프로그래머들이사용자의요구를충

족시키는함수의기능을구현하고확장할수있는프로그래밍가능성을지원한다. 프로그래머

들은함수의연산과인터페이스를일정한세분화수준으로정의하여도메인특화프로그램을

쉽게구성할수있다. 비록캡슐화된함수들이프로그램의모든기능을표현할수있지만,기존

의컴파일러들은이러한프로그램을완전히최적화하지못하고있다. 그이유는기능들이추상

화되고캡슐화되어더자세한수준으로분할되어있지않기때문이다.

소프트웨어정의네트워킹에서는,기존의컴파일러들이세밀하게나누어진함수들을병렬

화할기회를놓치고있다. 이들은매치함수와액션함수를포함하는각패킷처리테이블을단

일작업단위로취급한다. 매치함수와액션함수를분리하면더많은컴파일러최적화기회를

찾을수있으나,기존의컴파일러들은패킷처리테이블단위로컴파일을하고있기때문에최

적화기회를놓치게된다.

딥러닝추론분야에서는,기존의컴파일러들이텐서분해를통한딥러닝모델의세밀한합

성곱을완전히최적화하지못한다. 텐서분해기법은합성곱가중치에대해텐서분해를적용

하고분해된합성곱시퀀스를생성한다. 하지만,기존의컴파일러들은합성곱을해당분해된

합성곱시퀀스로만대체하며,분해된합성곱에대한각각의레이어들을재정렬하거나융합하

지않기때문에메모리사용량을줄일기회를놓치게된다.

본연구는네트워크프로그래밍과딥러닝추론에특화된새로운세분화컴파일러를제안

한다. 네트워크프로그래밍을위한새로운컴파일러인 PSDN을소개하며, PSDN컴파일러는

127

패킷처리테이블을매치함수와액션함수로분할하고,함수들을파이프라인에스케줄링하며,

동기화비용을줄이기위해함수를병합한다. 또한,딥러닝추론을위해 TeMCO라는새로운컴

파일러를소개하며, TeMCO컴파일러는분해된합성곱시퀀스를개별합성곱레이어로분할하

고,합성곱레이어를스케줄링하여스킵연결을최적화하며,레이어호출비용을줄이고메모리

사용량을줄이기위해합성곱레이어와활성함수레이어를병합한다. 본연구의컴파일러는

분할-스케줄링-병합기법을이용하여네트워크프로그램의병렬화기회를찾고텐서분해를통

한딥러닝모델의최대메모리사용량을줄인다.

본연구의컴파일러들은분할-스케줄링-병합기법을이용하여도메인특화프로그램의성

능을향상시킨다. 이전연구와비교했을때, PSDN컴파일러는 7개의네트워크프로그램의패

킷처리시간을 12.1%줄이고자원사용을 3.5%감소시킨다. TeMCO컴파일러는 10개의딥러

닝모델에대하여배치크기에따라추론시간은 1.08배에서 1.70배증가하나내부텐서의최대

메모리사용량을 75.7%줄인다. 본연구의컴파일러들은특정도메인에맞춘분할-스케줄링-병

합기법을활용하여도메인특화프로그램에서성능향상을이룰수있다.

핵심되는말:컴파일러,네트워크,딥러닝

128

	Cover Page
	Title Page
	Approval Page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Introduction
	Background & Motivation
	Network Programming
	Software-Defined Networking
	Structure of P4 Language
	Limitations of Existing Network Compilers

	Tensor Decomposition in Deep Learning
	Tensor Decomposition Methods
	Number of Operations of Decomposed Convolution Sequences
	Memory Usage of Decomposed Convolution Sequences
	Limitations of Existing Tensor Decompositions

	Motivation

	Split, Schedule, Merge for Network Programs
	Overview
	Splitting Scheme
	Table Decomposition
	Dependency Analysis

	Scheduling Scheme
	Clock Cycle Estimation
	Pipeline Scheduling Algorithm

	Merging Scheme
	Code Generation
	Backend Optimization and Function Fusion

	Split, Schedule, Merge for Deep Learning Models
	Overview
	Splitting Scheme
	Tensor Decomposition and Inlining
	Dependency Analysis

	Scheduling Scheme
	Identifying Skip Connections
	Finding Precedent Reduced Tensors and Restore Layers
	Evaluating FLOPS and Memory Trade-Offs
	Replacing Skip Connections

	Merging Scheme
	Activation Layer Fusion
	Concatenation Layer Transformation

	Evaluation
	PSDN Compiler
	Evaluation Setup
	Latency
	Resource Utilization
	Throughput

	TeMCO Compiler
	Evaluation Setup
	Peak Memory Usage
	Inference Time
	Accuracy

	Discussion
	PSDN Compiler
	TeMCO Compiler

	Related Work
	Network Compilers
	Tensor Decomposition
	DNN Framework for Memory-Efficient Deep Learning

	Conclusion
	References
	Abstract in Korean

