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ABSTRACT
Only with a right schedule and a right topology layout, a graph al-
gorithm can be efficiently processed on GPUs. Existing GPU graph
processing frameworks try to find an optimal schedule and topol-
ogy layout for an algorithm via iterative search, but they fail to find
the optimal configuration because their schedules and topology
layouts are tightly coupled in their processing models. Moreover,
their tightly coupled schedules and topology layouts make it dif-
ficult for developers to extend the tuning space. To easily enlarge
the tuning space of GPU graph processing, this work proposes a
new GPU graph processing abstraction scheme that fully decouples
schedules, topology layouts, and algorithms from each other with
abstraction interfaces. Moreover, this work proposes GRAssembler,
a new GPU graph processing framework that efficiently integrates
the decoupled schedule, topology layout, and algorithm without
abstraction overhead. Thanks to the efficient decoupling and in-
tegration, GRAssembler increases the tuning space from 336 to
4,480 and achieves 30.4% higher performance on geomean average,
compared to the state-of-the-art GPU graph processing framework.
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1 INTRODUCTION
Graph processing is widely used in various fields such as social
science, chemistry, and neuroscience [31]. For example, social net-
work services recommend friends by analyzing their social graphs,
and search engines rank related web pages via the PageRank graph
algorithm. As the size of a graph increases to improve the analysis
quality, its processing time increases. Since a graph has a numerous
number of vertices and edges, and each vertex is connected to a set
of other vertices, graph processing is a highly parallel workload and
fits well to graphics processing units (GPUs) that have large parallel
core counts. Thus, to reduce the processing time, optimizing graph
processing on GPUs is crucial.

Graph processing frameworks take as input a graph algorithm, a
topology layout, and a schedule. One must choose a right topology
layout and a right schedule for a given graph algorithm as they
greatly affect the processing efficiency of the graph algorithm on
GPUs. Unfortunately, the existing graph processing frameworks
heavily focus on the schedules, and thus overlook the high impor-
tance of the topology layouts and narrow the graph processing
tuning space. First, the frameworks [3, 5, 20, 23, 28, 34, 36] support
only up to two kinds of topology layouts such as COO and CSR. For
example, GraphIt [5] provides 7 different schedule optimizations,
but supports only one topology layout such as CSR. Their limited
coverage on topology layouts limits their tuning spaces, and thus
the frameworks cannot fully optimize the graph processing.

Moreover, the limited composability between schedules and
topology layouts of the existing frameworks [3, 5, 20, 23, 28, 34, 36]
limits the tuning spaces and graph processing performance. To
find the optimal topology layout and schedule, the existing frame-
works examine a few pre-defined schedules; topology layouts are
tightly coupled with the schedules, and thus get determined once
the frameworks select a schedule. Although different topology lay-
outs can be optimal for different datasets for a schedule as shown
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in Figure 3b, the frameworks support a fixed topology layout for a
schedule, thus losing optimization opportunities.

To make things worse, the tightly coupled schedules and topol-
ogy layouts severely limit the extendability of graph processing
space. Ideally, developers should be able to explore all the possible
𝑀 × 𝑁 pairs by implementing 𝑀 different schedules and 𝑁 inde-
pendent topology layouts (i.e.,𝑀 + 𝑁 implementations). However,
the tightly coupled nature of schedules and topology layouts incurs
significant development costs as developers must write𝑀 × 𝑁 dif-
ferent implementations. That is, if developers wish to evaluate their
new topology layout, they must write𝑀 different implementations
of the new topology layout, each of which is tightly coupled with
one of the𝑀 existing schedules. Such significant development costs
make it difficult for developers to easily extend the tuning space
of GPU graph processing. Therefore, to easily enlarge the tuning
space, we need a new framework that achieves high tuning cov-
erage, composability, and extendability with lowers development
costs by decoupling schedules and topology layouts.

Aimed at easily enlarging the tuning space of GPU graph pro-
cessing, this work first proposes a new graph processing abstrac-
tion scheme that fully decouples schedules and topology
layouts. We make a key finding that, by developing extensible and
interference-free interfaces, schedules and topology layouts can
be decoupled. Our detailed characterization of the three compo-
nents of graph processing reveals the following properties of the
components. First, schedules can be classified into two types de-
pending on their graph data access orderings. Second, we identify
two abstract types for topology layouts based on whether both the
source and destination vertices are explicitly specified within them.
Third, we find that the components of the same type share a few
commonly-used operations, allowing us to define abstract inter-
faces which can be used to implement all the existing schedules and
topology layouts. The abstract interfaces fully decouple schedules
and topology layouts, and can be used to easily enlarge the tuning
space.

This work also prototypes GRAssembler, a new GPU graph pro-
cessing framework that supports the fully decoupled graph pro-
cessing abstraction interfaces to easily enlarge the tuning space.
GRAssembler consists of tuner, graph builder, and runtime for ex-
ploring tuning spaces, building various topology layouts, and exe-
cuting graph programs using the abstract interfaces, respectively. To
reduce the potential performance overheads due to the abstraction
interfaces, GRAssembler reduces argument passing and uses func-
tion templates instead of function pointers. GRAssembler explores
the easily extended tuning space and finds the optimal topology lay-
out and schedule which the existing frameworks cannot derive due
to their limited tuning spaces. Furthermore, GRAssembler further
expands the tuning space with a newGPU-friendly optimization. By
exploiting the abstract interfaces and optimizations, GRAssembler
identifies the optimal graph processing model from the enlarged
tuning space which fully includes the entire tuning spaces of the
existing frameworks.

This work evaluates GRAssembler on nine graph datasets with
seven schedules, five topology layouts, and four graph algorithms.
For the evaluation, this work employs various GPU-friendly opti-
mizations including direction optimization, active set data struc-
ture selection, active set deduplication, and active set ordering.

Our detailed evaluation using an NVIDIA RTX 3090 GPU shows
that GRAssembler obtains 1.30x and 2.21x geomean speedups over
GraphIt [5] and GSwitch [23], the state-of-the-art graph processing
frameworks. The large speedup gains clearly demonstrate the high
effectiveness of enlarging the GPU graph processing tuning space
by the efficient decoupling and integration through the abstract
interfaces and GRAssembler’s optimizations.

The contributions of this paper are:

• the characterization of schedule and topology layout by data
access ordering and explicitness of edge data (§4).
• the interfaces that fully decouple schedules, topology lay-
outs and algorithms, and the abstract processing model that
assembles the abstract interfaces (§4).
• the prototype of GRAssembler that supports the newly pro-
posed graph processing abstract interfaces with compiler
optimizations (§5).
• the extension of the graph processing tuning space with
topology layouts (§5).
• the case study of extending topology layout library that
shows the high extensibility of GRAssembler (§6).

2 BACKGROUND
GPU graph processing frameworks [3, 5, 9, 13, 16, 20, 23, 28, 34] take
a graph, an algorithm, and tuning options as input, and process the
graph according to the algorithm and tuning options. The graph
𝐺 = (𝑉 , 𝐸) is a pair of a set of vertices 𝑉 and a set of edges 𝐸.
The algorithm describes how to process the graph, and the tuning
options describe how the framework should process the algorithm
on GPUs. This work categorizes the tuning options into schedule
and topology layout which describe in what order to execute
the graph processing tasks on GPUs and how to store the graph
topology in memory, respectively.

2.1 Algorithm
An algorithm describes how to process a graph 𝐺 = (𝑉 , 𝐸). Typi-
cally, a graph processing iteratively executes four operations:𝑔𝑎𝑡ℎ𝑒𝑟 ,
𝑠𝑢𝑚, 𝑎𝑝𝑝𝑙𝑦 and 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 . The 𝑔𝑎𝑡ℎ𝑒𝑟 operation gathers the data of
neighbor edge 𝑒 ∈ 𝐸 of an active vertex 𝑣 ∈ 𝑉 . The 𝑠𝑢𝑚 operation
performs user-defined reduction (e.g., fetch-and-add, compare-and-
swap) on the neighbor edge data from the 𝑔𝑎𝑡ℎ𝑒𝑟 operation. The
𝑎𝑝𝑝𝑙𝑦 operation updates the value of each vertex to the computa-
tion result from 𝑔𝑎𝑡ℎ𝑒𝑟 and 𝑠𝑢𝑚. The 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 operation marks and
adds the updated vertex to the new active vertex set [14].

2.2 Schedule
The schedule describes which GPU thread processes which part
of a graph in what order. There are two basic scheduling schemes.
Vertex Mapping (VM) scheme simply maps each vertex to each
thread, and Edge Mapping (EM) maps each edge to each thread.

The skewed characteristics of real-world graphs incur a severe
workload imbalance on the Single Instruction Multi Thread (SIMT)
architecture of GPUs [12, 14]. For example, since each vertex has dif-
ferent numbers of edges, VM suffers from the workload imbalance
as shown in Figure 1. Although EM minimizes the workload imbal-
ance, the write-back from 𝑠𝑢𝑚 operation causes synchronization
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Figure 1: Schedules

overhead as shown in Figure 1. To mitigate such problems, vari-
ous schedules in Figure 1 provide different mappings between the
workloads and the resources available within GPUs [5, 10, 23, 25].

Warp Mapping (WM) and Cooperative Thread Array Mapping
(CM) share vertices among the threads in a warp and a Cooperative
Thread Array (CTA) on shared memory respectively, and distribute
their neighbor edges to each thread. Since WM and CM share work-
loads in a warp or CTA granularity, they reduce synchronization
overhead while balancing the workloads.

Thread, Warp and CTAmethod (TWC) [25] classifies each vertex
based on its degree (i.e., the number of edges), and allocates them to
low, middle, and high queues on global memory. Then, for the low,
middle, and high queues, TWC launches three different kernels that
are optimized to thread, warp, and CTA granularity, respectively.
Since TWC globally balances its workloads, TWC achieves better
workload balance than WM and CM but suffers from additional
kernel launch and global memory access overheads.

TWC based on Edge (TWCE) [5] is similar to TWC, but con-
structs and executes the queues on shared memory within a single
kernel. STRICT [10] rearranges active edges on global memory
which should be processed at current graph processing iteration
and distributes the active edges across CTAs.

2.3 Topology Layout
The topology layout describes how to store a graph topology in
GPU memory. Since edges connected to a vertex are very tiny
parts of entire edges in a graph, a graph topology is sparse data.
Thus, compressing the sparse topology while reducing irregular
memory accesses is one of the major challenges in the topology
layout design [2, 13, 16, 17, 20, 21, 24, 27], and there are several
topology layouts proposed as illustrated in Figure 2.

Coordinate storage format (COO) has a pair of arrays that rep-
resent edges as source vertex ids (𝑠𝑟𝑐) and destination vertex IDs
(𝑑𝑒𝑠𝑡 ), and an offset array (𝑝𝑡𝑟 ) that points to a starting index of
the 𝑠𝑟𝑐 and 𝑑𝑒𝑠𝑡 arrays for each vertex. For example, since 𝑝𝑡𝑟 [1]
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Figure 2: Topology layouts

is 1 and 𝑝𝑡𝑟 [2] is 6 in Figure 2, the edges with destination 𝑣1 are
stored from (𝑠𝑟𝑐 [1], 𝑑𝑠𝑡 [1]) to (𝑠𝑟𝑐 [6 − 1], 𝑑𝑠𝑡 [6 − 1]).

Compressed Sparse Row (CSR) and Compressed Sparse Column
(CSC) formats remove one of the edge arrays (𝑑𝑒𝑠𝑡 in Figure 2) from
the COO format because the index of the offset array (𝑝𝑡𝑟 ) has the
information. For example, since 𝑝𝑡𝑟 [2] is 6 in Figure 2, source and
destination ids of the edge at 𝑙𝑖𝑠𝑡 [6] are 5 (value of 𝑙𝑖𝑠𝑡 [6]) and 2
(index of 𝑝𝑡𝑟 ). CSR/CSC formats use less memory than COO by
removing an edge array, but an expensive binary search is required
to reconstruct the removed part only from an edge id.

Diagonal (DIA) [2] stores subdiagonal edges in regular arrays
such as 𝑝𝑙𝑢𝑠 and 𝑚𝑖𝑛𝑢𝑠 , and non-subdiagonal edges in another
layout such as COO format. For example in Figure 2, for a vertex
𝑉 4, 𝑝𝑙𝑢𝑠 [4] = 1 indicates an upper subdiagonal edge of which the
destination is 5, and𝑚𝑖𝑛𝑢𝑠 [2] = 1 indicates a lower subdiagonal
edge of which the destination is 1.

Ellpack (ELL) [2] allocates a constant number (𝐸𝐿𝐿_𝑆𝐼𝑍𝐸) of
edges in a regular array (𝑑𝑎𝑡𝑎) for each vertex, and then stores
the extra edges in another layout such as COO format. For ex-
ample in Figure 2, neighbor edges of a vertex 𝑉 4 are stored from
𝑑𝑎𝑡𝑎[𝐸𝐿𝐿_𝑆𝐼𝑍𝐸∗4] to𝑑𝑎𝑡𝑎[𝐸𝐿𝐿_𝑆𝐼𝑍𝐸∗5−1], because the number
of elements for each vertex is constant. The number of edges can
be found in 𝑛𝑛𝑧 [4] = 2.

3 MOTIVATION
To find the optimal tuning options for a graph algorithm, the ex-
isting graph processing frameworks [3, 5, 9, 13, 16, 20, 23, 28, 34]
explore their tuning options including schedule and topology lay-
out listed in Table 1. However, the frameworks fail to find the
optimal tuning options due to their limited exploration coverage,
composability and extendability.

Problem 1: Limited exploration coverage. The existing graph
processing frameworks do not consider various schedules and topol-
ogy layouts in their tuning space exploration. Table 1 shows sched-
ules and topology layouts that each framework considers in its
tuning space. Although the frameworks support various sched-
ules while extending the options, they keep leaving one or two
options such as CSR and COO for the topology layout. For exam-
ple, the frameworks do not explore topology layouts that recent
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Figure 3: Processing time comparison for different schedules
and topology layouts on hollywood-2009 and road-central
datasets [11] with PageRank algorithm.

work [16, 27] proposes. Since the topology layout also largely af-
fects the graph processing performance as Figure 3b illustrates, the
limited exploration coverage, especially on the topology layout,
makes the frameworks miss the further optimization opportunities.

Problem 2: Limited composability. Figure 3 shows how dif-
ferent schedules and topology layouts affect the processing time on
two datasets [11]. The best schedule is different depending on the
topology layout and dataset, and the best topology layout is differ-
ent depending on the schedule and dataset. However, the existing
graph processing frameworks only decouple the algorithm from
their processing model while leaving their schedule and topology
layout options tightly coupled in the processing model as Figure 4a
shows. Thus, the frameworks can explore only limited schedule and
topology layout combinations that are implemented in the frame-
works, and may miss the optimal combination if not implemented.

Problem 3: Limited exploration extendability. The tightly
coupled schedule and topology layout in the existing frameworks
also limit their extendability. Since the schedule and topology lay-
out are tightly coupled, if there exist𝑀 schedules and 𝑁 topology
layouts in a framework, the developers should develop𝑀 × 𝑁 op-
tions to support all the combinations. For example, to fully support
VM and EM schedules and COO, CSR, ELL topology layouts, the
framework should develop 6 (2×3) options like Figure 4b. Moreover,
if a schedule (or topology layout) developer wants to add a new
option, the developer should develop 𝑁 (or𝑀) options together to
support all the combinations. Thus, extending a new option in the
existing frameworks requires a huge amount of development cost.

Solution: A new graph processing abstraction model. To
solve the problems, a new abstraction model for graph processing
is necessary that decouples not only the algorithm but also the
schedule and topology layout from the processing model like Fig-
ure 6. This work designs the graph processing abstraction model
with the design goals such as high coverage, composability, extend-
ability and efficiency. First, the new abstraction model should be
general to cover a wide range of schedules and topology layouts
(high coverage). Second, scheduling graph vertices and edges ac-
cording to a schedule, accessing topology data from a topology
layout and executing an algorithm should be fully decoupled and
independently operate in the abstraction model, so all the possible
combinations are composable (high composability) and adding a
new option can operate with the existing options without additional
modification (high extendability). For example, if there exist𝑀
schedules and 𝑁 topology layouts, the developers only need to
develop𝑀 + 𝑁 options to support all the𝑀 × 𝑁 combinations. In

the Figure 6 example, developers need to develop only 5 (2 + 3)
options to fully support VM and EM schedules and COO, CSR, ELL
topology layouts. Finally, the decoupled schedule, topology layout
and algorithms should be assembled without a huge abstraction
overheads (high efficiency), and thus allowing users to achieve the
optimal performance by finding the optimal schedule and topology
layout.

4 GRAPH PROCESSING ABSTRACTION
This work proposes a new abstract graph processing model. As Fig-
ure 5 shows, a graph processing framework iteratively executes an
algorithm until its results become saturated. Each iteration, which
is called a super-step, largely consists of two steps such as gather step
and apply step. In the gather step, the framework gathers incoming
data from neighbors of each vertex by iterating its incoming edges.
In the apply step, the framework updates each vertex data reflect-
ing the gathered data and the algorithm. After each super-step,
the framework analyzes a set of vertices called active set that the
framework will process in the next super-step.

The gather step consists of four sub-steps such as edge schedule,
topology layout access, gather and sum. In the edge schedule sub-
step, the framework schedules how to access the incoming edges
or outgoing edges of the vertices in the active set according to the
schedule, and assigns the scheduled edges into GPU worker threads.
In the topology layout access sub-step, the framework loads the
edge information such as source and destination vertex IDs and its
weight from the topology layout. In the gather and sum sub-steps,
the framework collects and accumulates the incoming data of the
vertices according to the algorithm.

The apply step consists of two sub-steps such as vertex schedule
and apply. In the vertex schedule sub-step, the framework assigns
each vertex in the active set to the GPU worker threads. In the
apply sub-step, the framework updates each vertex data reflecting
its accumulated incoming data.

Unlike existing graph processingmodels [3, 5, 9, 13, 16, 20, 23, 34],
edge schedule, vertex schedule and topology layout access are sep-
arate sub-steps in the newly proposed abstract graph processing
model. In other words, a graph processing framework can schedule
edges and vertices, access topology layout and execute the algo-
rithm as independent steps. Thus, if abstraction interfaces are well
designed for schedule, topology layout and algorithm, the abstract
graph processing model can decouple the schedule, topology layout
and algorithm from each other.

4.1 Schedule Abstraction
The schedule basically determines an edge and a vertex for each
GPU thread to execute at each edge and vertex schedule sub-step.
Since the gather step processes all the imbalanced tasks by manip-
ulating incoming edges of each vertex, the apply sub-step is well
balanced without interacting with other vertices or edges. Thus,
vertex scheduling is simply mapping a vertex id to a GPU thread,
and graph processing schedules [5, 10, 23, 25] focus on how to
schedule imbalanced edges in a balanced way. This schedule ab-
straction also focuses on designing a common interface for all the
schedules in §2.2 to schedule the next edge at the edge schedule
sub-step.
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Table 1: Coverage comparison among existing frameworks about schedules, topology layouts and interfaces

Framework Schedule Topology Layout Algorithm Interface Schedule Interface Topology Layout Interface
Gunrock [36] VM, EM, TWC COO, CSR O X X
Gswitch [23] VM, EM, WM, CM, TWC, STRICT COO, CSR O X X
Graphit [5] VM, EM, WM, CM, TWC, TWCE, STRICT CSR O X X
GRAssembler VM, EM, WM, CM, TWC, TWCE, STRICT COO, CSR, ELL, DIA, Gshard O O O

Processing 
Model

……

COO + VM

COO + EM

ELL + VM

DIA+ TWC

Page Rank

Developer’s Effort Framework (w/o Developer’s Effort) 

Topology
Layout 

Developer

Schedule 
Developer

Algorithm 
Developer

Algorithm 
Interface

(a) Development model of the existing frameworks

1   COO_EM (coo, #Edge) :
2      Foreach Thread tid in (0, #Edge) :
3         src = coo.srclist[tid]
4         dest = coo.destlist[tid]
5         if sum(dest, gather(src, dest, tid)) :
6 activate(dest)

1   CSR_EM (csr, #Edge) :
2      Foreach Thread tid in (0, #Edge) :
3         src = binarySearch(csr.offset, tid)
4 if src == -1 : 
5 continue
6 dest = csr.list[tid]
7 if sum(dest, gather(src, dest, tid)) :
8 activate(dest)

1   CSR_VM (csr, #Vertex) :
2      Foreach Thread tid in (0, #Vertex) :
3         For nbr in(csr.offset[tid], csr.offset[tid + 1]) :
4            src = tid
5            dest = csr.list[nbr]
6            if sum(dest, gather(src, dest, tid)) :
7 activate(dest)

1   COO_VM (coo, #Vertex) :
2      Foreach Thread tid in (0, #Vertex) :
3         For nbr in (coo.ptr[tid], coo.ptr[tid + 1]) :
4            src = coo.srclist[nbr]
5            dest = coo.destlist[nbr]
6            if sum(dest, gather(src, dest, tid)) :
7 activate(dest)

1   ELL_EM (ell, #Edge) :
2      Foreach Thread tid in (0, #Edge) :
3         src = tid / ELL_width
4 if ell.nnz[src] < (tid % ELL_width) : 
5 continue
6 dest = ell.idx[tid]  
7 if sum(dest, gather(src, dest, tid)) :
8 activate(dest)

Topology
Layout 

Developer

Schedule 
Developer

COO + EM CSR + EMELL + EM

COO + VM CSR + VM

1   ELL_VM (ell, #Vertex) :
2      Foreach Thread tid in (0, #Vertex) :
3         For nbr in (0, ELL.nnz[src]) :
4            src = tid
5            dest = ell.idx[tid * ELL_width + nbr]
6            if sum(dest, gather(src, dest, tid)) :
7                activate(dest) ELL + VM

(b) Example codes for different schedules and topology layouts

Figure 4: Development model and its example codes used in the existing frameworks [5, 23, 36]. (a) shows the development
model of the existing frameworks that only decouples algorithms from its processing model, and (b) shows their example
codes about schedules (VM, EM) and topology layouts (COO, CSR, ELL). Since the schedule and topology layout are tightly
coupled in the frameworks, the developers should develop M x N combinations to support M schedules and N topology layout.
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Figure 5: Graph processing model of GRAssembler. The pro-
cessing model decouples the schedule and topology layout
access from the others.

To design a generally applicable schedule interface, this work
first analyzes all the schedules in §2.2 and designs the schedule
interface like Table 2. Since the schedules schedule edges while
balancing workloads across GPU threads, this work abstracts the
schedules with two kinds of interfaces such as edge scheduling and
load balancing. Moreover, to increase the coverage, extendability
and efficiency, this work introduces several arguments about active
set and direction in the proposed interfaces.

Abstraction for edge scheduling: Since all the schedules sched-
ule the next edge for each GPU thread, the schedule abstraction
interface should have a method such as getNextEdgeID with 𝑡𝑖𝑑

and 𝑒𝑖𝑑 arguments that returns an edge id (𝑒𝑖𝑑) for a given GPU
thread id (𝑡𝑖𝑑). Moreover, to notify the framework about the end
of scheduling or the skipped iteration, getNextEdgeID returns a
variable (𝑠𝑡𝑎𝑡𝑒) about its scheduling state.

Abstraction for load balancing: Schedules such as WM, CM,
TWC, TWCE and STRICT share topology information across threads

using global or shared memory on a GPU to mitigate the synchro-
nization overheads of EM and the imbalanced schedule of VM.
At the beginning of each super-step, the schedules collect neigh-
bor edges of vertices among shared threads within a warp, CTA
or kernel depending on the schedule, and equally distribute the
collected edges. Since the schedules store the collected and dis-
tributed edges on global or shared memory, this schedule abstrac-
tion requires interfaces for the distribution such as initGlobal and
initShared, and arguments (𝑠ℎ𝑎𝑟𝑒𝑑𝐵𝑢𝑓 and 𝑒𝑑𝑔𝑒𝐿𝑖𝑠𝑡 ) that deliver
distribution results to the getNextEdgeIDmethod. For example, via
the initGlobalmethod, TWC can generate global queues for small,
middle and high degree vertices on global memory, and STRICT
can collect edges of vertices in the active set and equally distributes
edges to the entire CTAs. via the initShared method, WM, CM
and TWC can generate shared_id and shared_deg as shown in Fig-
ure 1, and TWCE can generate the small, middle and high degree
queues on shared memory. Here, via initShared, VM and EM can
also configure the beginning and end indexes of their edge id set,
and store the results at 𝑒𝑑𝑔𝑒𝐿𝑖𝑠𝑡 .

Active set argument: For efficient graph processing, the graph
processing framework analyzes a set of vertices called active set at
each super-step, and only processes vertices in the active set instead
of the entire vertices in a graph. To support the active set, this work
introduces the active set argument (𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 ) to the initGlobal
and initShared methods. Moreover, to further optimize the graph
processing, this work provides various data structures for the active
set such as queue, bitmap, bytemap and counter, and allows the
graph processing framework to find the optimal active set data
structure. Here, 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 provides a common interface for sched-
ules to manipulate active sets regardless of their data structure.

Direction argument: The two basic schedules are EM and VM.
While EM directly maps edges to GPU threads, VM maps incoming
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1   initShared (tid, activeset, data){
2      getNeighbor(tid, start, end)
3      data[0] = start
4      data[1] = end}

5   getNextEdgeID (tid, data, &vid, &eid, &cond){
6     if (data[0] >= data[1]) cond = false
7      vid = tid
8      eid = data[0]++} 

1   initShared (tid, activeset, data){data[0] = 0}

2   getNextEdgeID (tid, data, &vid, &eid, &cond){
3     if ((data[0]++) = 1) cond = false
4     if (searchVID(tid, vid)) cond = false  
5     eid = tid} EM

1   getNeighbor (vid, &start, &end){
2      src = ptr[vid]
3      dest = ptr[vid + 1]}

4   searchVID (eid, &vid, &cond){
5      vid = srclist[eid]}

6   getEdge (vid, eid, data, &src, &dest){
7     src = srclist[eid]
8     dest = destlist[eid]}

1   getNeighbor (vid, &start, &end){
2     src = offset[vid]
3     dest = offset[vid + 1]}

4   searchVID (eid, &vid, &cond){
5      vid = binarySearch(offset, eid)}

6   getEdge (vid, eid, data, &src, &dest){
7      src = vid
8      dest = list[eid]} 

1   getNeighbor (vid, &start, &end){
2      start = vid * ELL_width
3      end = vid * ELL_width + nnz[vid]} 
4   searchVID (eid, &vid, &cond){
5      vid = eid / ELL_width
6      if (nnz[src] < (eid % ELL_width)) cond =  false}
7   getEdge (vid, eid, data, &src, &dest){
8      src = vid
9      dest = idx[eid]} 

Topology
Layout 

Developer

Schedule
Developer

(b) Example codes for different schedules and topology layouts

Figure 6: Development model and its example codes used in the GRAssembler framework that this work proposes. (a) shows
the newly proposed development model that fully decouples the schedule, topology layout and algorithm from its processing
model. (b) shows the example codes about schedules (VM, EM) and topology layouts (COO, CSR, ELL) that are used in Figure 4.
Since the schedule and topology layout are fully decoupled, the developers need to develop M + N options to support M x N
combinations for M schedules and N topology layout.

or outgoing edges of each vertex to GPU threads, so the schedule
abstraction requires direction information (𝑖𝑠𝐼𝑛) such as pull or
push.

4.2 Topology Layout Abstraction
To design a generally applicable topology layout interface, this
work first analyzes all the topology layouts in §2.3 and designs the
topology layout interface like Table 2. Since a graph topology is
a very sparse data, various compression schemes are used in the
topology layouts. To efficiently support the various compression
schemes while providing the fundamental topology layout access
and the complex topology layout access, this work designs the
topology layout interfaces with three kinds of abstraction such as
topology data access, fast data access and virtual topology access.

Abstraction for topology data access: Since topology layout
is about graph topology, the topology layout interface is basically
about returning incoming and outgoing edges for a given vertex
and returning source and destination vertices for a given edge.
Thus, this work designs two basic topology layout interfaces such
as getNeighbor and getEdge. getNeighbor returns incoming or
outgoing edge lists of a given vertex id (𝑣𝑖𝑑) as beginning and end
indices (𝑏𝑒𝑔𝑖𝑛 and 𝑒𝑛𝑑) of edge arrays. To indicate the incoming or
outgoing edges, getNeighbor also takes the direction information
(𝑖𝑠𝐼𝑛) as an input. getEdge returns the edge information such as
the source and destination vertex ids (𝑠𝑟𝑐 and 𝑑𝑠𝑡 ), and the weight
(𝑤𝑒𝑖𝑔ℎ𝑡 ) of the edge for a given edge id (𝑒𝑖𝑑).

Abstraction for fast data access: To reduce memory usage,
some topology layouts like CSR and CSC keep only one of the
source or destination vertex ids for edges. To achieve full edge
information such as the source and destination ids, a graph pro-
cessing framework should reconstruct the missing information via
an expensive binary search on the 𝑝𝑡𝑟 array. However, since most
schedules (all the schedules except EM in §2.2) generate edge lists
by invoking getNeighbor for a base vertex, the framework already
has the missing information in the entire super-step, and can simply
use the base vertex instead of executing the binary search. There-
fore, to avoid the unnecessary binary search operation, this work
divides the getEdge operation into two steps such as searchVID
and getEdge. searchVID executes the binary search on the 𝑝𝑡𝑟

array and returns the base vertex id (𝑣𝑖𝑑) for a given edge id (𝑒𝑖𝑑),
and getEdge receives the base vertex id (𝑣𝑖𝑑) with its direction
(𝑖𝑠𝐼𝑛) as inputs. If the base vertex id is known in the super-step,
the framework can skip the searchVID operation with a help of
compiler optimization.

Abstraction for virtual topology access: To support differ-
ent access patterns on a topology layout such as noncontinuous
access on edge lists, this topology layout abstraction supports
virtual topology access via initTopology and topologyGather.
initTopology initializes the virtual topology for each super-step
and generates a new active set. topologyGatherwraps the gather
method in the algorithm interface for the virtual topology. For ex-
ample, a blocked layout that has multiple sub-graphs maintains
multiple virtual vertices across the sub-graphs for one real vertex.
With the initTopology method, a topology layout developer can
generate virtual vertices and their edge lists, and thus allow multi-
ple virtual vertices in multiple sub-graphs to sequentially access
their edges that are not sequentially stored in the real topology. For
another example, initTopology and topologyGather allow the
framework to access a continuous edge list with temporary data
like Cusha [16]. After generating a virtual topology layout for the
temporary data via initTopology, the framework can gather the
neighbor edge data by continuously accessing the virtual edge list
using topologyGather.

4.3 Algorithm Abstraction
A graph processing algorithm can consist of four operations such
as 𝑔𝑎𝑡ℎ𝑒𝑟 , 𝑠𝑢𝑚, 𝑎𝑝𝑝𝑙𝑦 and 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 as described in §2.1. This work
provides the algorithm interfaces such as gather, sum and apply
for the operations except 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 . gather collects data of an edge
(𝑠𝑟𝑐_𝑖𝑑 , 𝑑𝑒𝑠𝑡_𝑖𝑑) with its weight value (𝑤𝑒𝑖𝑔ℎ𝑡 ) for the destination
vertex (𝑑𝑒𝑠𝑡_𝑖𝑑), and sum integrates the gathered result (𝑑𝑎𝑡𝑎) for
the destination vertex (𝑑𝑒𝑠𝑡_𝑖𝑑). Here, to freely define types of edge
weight and gathered data, this work uses template types for the edge
weight (𝐸𝑇 ) and the gathered results (𝑇𝐷). apply updates the vertex
value for a given vertex id (𝑣𝑖𝑑) with the integrated result from sum.
To notify the graph processing framework about the updated vertex,
sum and apply return a boolean result. If sum and apply return
a boolean result, the framework executes filter for the vertex,



Decoupling Schedule, Topology Layout, and Algorithm to Easily Enlarge the Tuning Space of GPU Graph Processing PACT ’22, October 10–12, 2022, Chicago, IL, USA

Table 2: GRAssembler Interface Specifications. Here, ET and TD are types for edge weight and temporary data between gather
and sum. ActiveSetType is a GRAssembler-tunerable data structure for active sets like a queue, bitmap, bytemap and counter.

Method Method Description
Schedule Interface

void initGlobal (ActiveSet& activeSet, bool isIn) Distribute active set to global memory for GPU kernel
∗ activeSet: active set of the current super-step, isIn: PUSH/PULL direction

void initShared (int tid, ActiveSet& activeSet, bool isIn, Distribute active set to shared memory for warp and CTA
int* sharedBuf, int* edgeList) ∗ sharedBuf: pointer to queues in the shared memory, edgeList: a edge list for each thread to execute
state getNextEdgeID (int tid, bool isIn, int* sharedBuf, Schedule an edge (eid) for a given GPU thread (tid)int* edgeList, int& vid, int& eid)

Topology layout Interface
void getNeighbor (int vid, bool isIn, int& begin, int& end) Return beginning and end positions of an edge list for a vertex id (vid) considering direction
void getEdge (int eid, int vid, bool isIn, int& src, int& dest, ET& weight) Return source and destination vertex ids and edge weight for an edge id (eid) considering direction
bool searchVID (int eid, bool isIn, int& vid) Return a vertex id (vid) for a given edge id (eid) considering direction
void initTopology (bool isIn, ActiveSet &old, ActiveSet &new) Initialize virtual topology layout for each super-step
TD topologyGather (int src_id, int dest_id, ET weight) Return pre-gathered data at the virtual topology layout

Algorithm Interface
void initVertexValue (int vid) Initialize vertex value for a vertex (vid)
TD gather (int src_id, int dest_id, ET weight) Collect information from an edge (src_id, dest_id) for a destination vertex (dest_id)
bool sum (int dest_id, TD data) Integrate gathered data for a destination vertex (dest_id)
bool apply (int vid) Update a vertex value with the integrated information for a vertex (vid)
bool filter (int vid) Filter a vertex (vid) from the active set if not updated
bool checkDirection (int numOfVertices, int numOfActiveSet) Decide the direction of the super-step among pull and push
ET getNewGlobalThreshold (ET oldThreshold) Return a new threshold for the edge weight

and adds the filtered results into the active set. In addition to the
operations, this work provides initVertexValue that initializes
the vertex value at the beginning of the graph processing.

Removing redundant operations in 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 : The 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 op-
eration consists of activation, filtering and fan-out edge processing
operation. By checking return values of the 𝑔𝑎𝑡ℎ𝑒𝑟 and 𝑎𝑝𝑝𝑙𝑦 func-
tions, this work can embed the activation operation into the graph
processing framework and remove redundant activation execution
in 𝑔𝑎𝑡ℎ𝑒𝑟 , 𝑎𝑝𝑝𝑙𝑦 and 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 . Moreover, since the fan-out edge pro-
cessing at the current iteration and the gathering operation at the
next iteration have the same semantics, this work makes the 𝑔𝑎𝑡ℎ𝑒𝑟
function fan-out the updated values at the next super-step iteration.
Thus, only the filter function is necessary.

Abstraction for flexible execution: Some algorithms like BFS
and Delta-SSSP dynamically switch their processing direction be-
tween pull and push, or update a vertex value only if the value is
larger than dynamically changing threshold. To support the flexible
execution, this work provides twomethods such as checkDirection
and getNewGlobalThreshold. checkDirection allows an algo-
rithm to dynamically decide the processing direction based on
the active set size at each super-step. getNewGlobalThreshold an
algorithm to change the threshold value from the old value.

4.4 Assembling Abstract Interfaces
The newly proposed abstract graph processing model assembles
the newly proposed schedule, topology layout and algorithm in-
terfaces, and processes a graph. As Figure 6a illustrates, this work
allows the schedule, topology layout and algorithm developers to
separately and independently implement their schedule, topology
layout and algorithm using the interfaces in Table 2. Using a given
schedule, topology layout and algorithm via the interfaces, a super-
step iteration of the abstract graph processing model presented in
Algorithm 1 processes a given graph with an active set. The graph
processing model consists of the gather step (Line 2 to 25) and the
apply step (Line 26 to 30). To handle the topology layouts like DIA

and ELL which require an extra topology layout, the graph process-
ing model iterates over the multiple topology layouts (Line 2). The
edge process first initializes topology layout and the global mem-
ory (Line 3 to 4), and then launches processing GPU kernels. The
GPU threads collaboratively initialize shared memory only once
per kernel invocation (Line 7). After initializing global and shared
memory, the model executes edge schedule, topology layout access,
gather and apply sub-steps in the gather step by iterating over the
while loop. Interacting with schedule, the model receives an edge
id (Line 10), and decides whether to terminate or skip the iteration.
Interacting with topology layout, the model achieves source and
destination vertex id and weight value for the edge (Line 16). By
checking if the source vertex is active, the model skips the iteration
if not (Line 17). Interacting with algorithm, the model executes
gather and sum operations (Line 20). If the sum operation updates
the destination vertex value, the thread allocates the destination
vertex in the output active set (Line 21). After finishing the gather
step, the model launches GPU kernel for the apply step, executes
the apply operation, and allocates the destination vertex in the
output active set if the vertex is updated (Line 26 to 30).

5 GRAssembler FRAMEWORK
Figure 7 shows the overall structure of GRAssembler that consists
of a tuner, a graph builder and a runtime. The GRAssembler tuner
searches for optimal combination of tuning options and evaluates
the combination with the GRAssembler runtime. The GRAssembler
graph builder converts the input graph data in a raw format to the
selected topology layout. The GRAssembler runtime executes the
graph processing interacting with the GRAssembler library that
the schedule, topology layout and algorithm developers develop.

GRAssembler tuner iteratively searches the optimal tuning
options such as schedules and topology layouts for a given algo-
rithm and a graph data. The tuner consists of manager, topology
layout selector, scheduling selector, and compiler. The manager de-
termines tunable tuning options for an algorithm. For example, the
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Algorithm 1: Super-step of the Abstract Processing Model
Input :Sche : Schedule

Layouts : Topology layouts
Alg : Algorithm
ASet𝑖𝑛 : Input Active Set

Output: ASet𝑜𝑢𝑡 : Output Active Set
1 Function Super-Step (Sche, Alg, Layouts, ASet𝑖𝑛 , ASet𝑜𝑢𝑡 ) :
2 foreach Layout ∈ Layouts do
3 Layout.initTopology (...)
4 Sche.initGlobal (...)
5 foreach kernel ∈ Sche.KernelSet do
6 foreach thread ∈ kernel do
7 Sche.initShared (...)
8 while true do
9 // Edge Schedule Step

10 (cond, eid, vid)← Sche.getNextEdgeID (thread, ...)
11 if cond = terminate then
12 break
13 else if cond = skip then
14 continue
15 // Topology layout Access Step
16 (src, dest, weight)← Layout.getEdge (eid, vid ...)
17 if Aset𝑖𝑛 .check(src) == false then
18 continue
19 data← Alg.gather (src, dest, weight)
20 if Alg.sum (dest, data) then
21 ASet𝑜𝑢𝑡 .add(dest)
22 end
23 end
24 end
25 end
26 foreach thread ∈ vertexKernel do
27 vid← thread
28 if Alg.apply (vid) then
29 ASet𝑜𝑢𝑡 .add(vid)
30 end
31 end

BFS algorithm dynamically changes the direction (push/pull) with
checkDirection depending on the number of active vertices. The
manager notices the presence of checkDirection in the algorithm,
generates two sets of tuning options while opting out the direction
option from the tunable tuning options, and then separately ex-
plores tuning options for each direction. Among the tunable tuning
options, the topology layout selector chooses tuning options about
topology layouts, and the scheduling selector chooses tuning op-
tions about schedules including active set type and direction of the
graph processing. Finally, the compiler generates and optimizes the
assembled graph processing program for the tuning options from
the given algorithm.

GRAssembler graph builder generates a topology layout from
an input raw graph for a given topology layout option. Here, the
GRAssembler graph builder partitions the graph into subgraphs and
merges subgraphs into a blocked graph to improve its locality.

GRAssembler runtime executes the assembled graph process-
ing program according to the super-step described in Algorithm 1.
TheGRAssembler runtime initializes the vertex values and active set
data structure, executes the super-step algorithm in Algorithm 1, ex-
ecutes checkDirection and getNewGlobalThreshold to control
the next super-step iteration. If the output active set is empty, the
runtime terminates the execution.

GRAssembler library consists of separate implementations of
schedules, topology layouts, and algorithms.

5.1 Compiler Optimization
Useless interface elimination:While the proposed abstract inter-
faces cover all the schedules, topology layouts and algorithms in §2,
some of the interfaces are useless for some combination of schedule,
topology layout and algorithm. If the implementer leaves the func-
tion body in Table 2 empty, GRAssembler analyzes its emptiness by
checking if its function body has only a terminator instruction, and
eliminates its callsites. For example, the VM schedule does not use
initGlobal, the COO topology layout does not use searchVID,
and the BFS algorithm does not use apply. To reduce the graph
processing latency, the GRAssembler compiler analyzes library
functions, and eliminates the useless function calls.

Atomic operation elimination on vertex value: Since graph
processing concurrently loads multiple edges and updates a vertex
value, a graph processing framework needs to use atomic operation
in sum for its correct processing. However, if each vertex value is
updated by only a thread, the atomic operation is not necessary.
GRAssembler conservatively removes the synchronization if all the
following three constraints are satisfied. First, the initTopology
method does not access its active set argument. This constraint
is necessary to avoid accessing aliased vertices or edges. Second,
the getNextEdgeID method maps thread ID to vertex ID. This con-
straint limits only one thread to access a vertex. Third, the direction
of the super-step is PULL. This makes only the mapped thread
write the vertex. For example, the COO topology layout using the
PULL direction with the VM schedule does not make multiple GPU
threads update a single vertex, thus allowing to use non-atomic
operations. The GRAssembler compiler analyzes the library to find
removable synchronization, and transforms the atomic operations
to non-atomic operations only for legal cases.

5.2 Tuning Space of GRAssembler
Table 3 illustrates the tuning options of GRAssembler and the ex-
isting frameworks [5, 23, 34, 36]. Compared to the existing frame-
works, GRAssembler supports the largest number of schedules
and topology layouts, and newly provides topology layout auto-
tuning and CTA size optimization. Thus, while GraphIt [5] supports
336 tuning combinations which was the largest number before
this work, GRAssembler supports 4480 combinations for tun-
ing options. Considering that some options such as CTA Size is
numeric, and this work counts the number of the numeric tun-
ing options as two, the actual number of tuning combination is
much larger than 4480. Followings are the tuning options used in
GRAssembler in addition to the schedules and topology layouts.

CTA size affects the ratio of active warps. A memory-intensive
program can hide its GPU memory latency by controlling the CTA
size [8]. This tuning option is newly introduced in this work.

Blocking is the policy to improve locality of graph with tiled
graph. Gluon [9] suggests diverse partitioning policies depending
on a traverse direction (axis and dimension) and standard (edge or
vertex) and we integrate the partitioning policies to GRAssembler.

Active set data structure is a data structure for the active vertex
set. This paper supports a queue, bitmap, bytemap and counter for
the active set data structure. The queue keeps active vertex ids, and
the map keeps activation as boolean value. The counter, which is
newly proposed in this paper, only keeps the size of the active set
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Table 3: Available tuning space in state-of-the-art GPU graph processing framework

GRAssembler GraphIt[5] Gswitch[23] Gunrock[36] SEP-Graph[34]
Topology layout Auto-tuning O X X X X
Topology layout COO, CSR, ELL, DIA, Gshard CSR COO, CSR COO, CSR COO, CSR
CTA Size Optimization O X X X X
Blocking O O X X X
Schedule VM, EM, WM, CM, TWC, TWCE,

STRICT
VM, EM, WM, CM, TWC,
TWCE, STRICT

WM, CM, TWC,
STRICT

VM, EM, TWC, CM

Active Set Data Structure Queue, BitMap, ByteMap, Counter Queue, Bitmap, ByteMap Queue, Bitmap Queue, Bitmap Queue
Direction Optimization O O O O O
Active Set Deduplication O O X O O
Active Set Ordering O O O O O
Number of Available Options 4480 336 68 96 64
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Figure 7: The overview of GRAssembler

by increasing its value by one for ASet𝑜𝑢𝑡 .add(vid). The counter is
effective if the active set is only used for checking emptiness.

Direction determines whether to access the neighbor edge list
based on the source (push) or based on the destination (pull) [3].

Active set deduplication reduces redundant computation [5].
The graph processing can activate the same vertex multiple times.
Deduplicating the duplicated active vertices removes redundant
computation by paying deduplication costs. If the duplication affects
the correctness, this option is mandatory.

Active set ordering determines whether to process an active
vertex at the next iteration or later by the global threshold. For
example, Delta-SSSP can benefit from this option [15, 26].

6 EVALUATION
This section evaluates the performance of GRAssembler with four
algorithms on nine graphs comparingwith the existing graph frame-
works [5, 23], and shows its extendability with the two case study
examples. The evaluation uses NVIDIA GeForce RTX 3090 that has
10,496 CUDA cores, 82 streaming multiprocessors, 6MB L2 cache
and 24GB memory for the GPU, and Intel(R) Core(TM) i7-8700 for
the host CPU. This evaluation uses the same nine graphs used in

Table 4: The optimal options of Figure 8

Alg Dataset Topology Schedule Direction Active set Thread #

PR

LJ, HW Block-COO EM Push Counter 512
OK, TW Block-COO EM Push Counter 512

RC Block-COO EM Push Counter 1024
RN, RU CSR VM Pull Counter 512

IC CSR TWC Push Counter 1024
UK CSR TWCE Push Counter 512

BFS

RC, RU CSR TWCE Push Queue 512
RN CSR VM Push Queue 512

LJ, OK ELL + CSR VM Pull RQnB 512
ELL + CSR TWCE Push Queue 512

IC CSR VM Pull QnB 512
CSR TWCE Push Queue 512

TW CSR CM Pull RQnB 512
CSR TWCE Push Queue 512

UK CSR TWCE Pull RQnB 512
CSR TWCE Push Queue 512

HW CSR CM Pull RQnB 512
CSR STRICT Push Queue 512

CC

HW, RC, LJ, Block-COO EM Push Counter 512
TW, RU, OK Block-COO EM Push Counter 512

RN CSR VM Pull Counter 512
UK CSR TWCE Pull Counter 512
IC ELL + COO EM Pull Counter 512

DS

RN COO TWCE Push Queue 512
HW, RC CSR TWCE Push Queue 512
LJ, OK CSR TWCE Push Queue 512

TW, RU, UK CSR TWCE Push Queue 512
IC CSR CM Push QnB 1024

GraphIt [5] and Gunrock [36] such as soc-orkut (OK) [29], uk-2005
(UK) [29], soc-twitter-2010 (TW) [29], soc-LiveJournal (LJ) [11],
indochina-2004 (IC) [11], hollywood-2009 (HW) [11], roadNetCA
(RN) [11], road_usa (RU) [? ], and road_central (RC) [11]. This eval-
uation uses the four different algorithms such as PageRank (PR) [6],
Connected Components (CC) [32], Breadth-First-Search (BFS) [1]
and Delta-SSSP(DS) [26]. Each algorithm has different operation
features. PR and CC always update the vertex value at each super-
step. BFS can switch the processing direction according to the ratio
of the active set, thus evaluating the impact of checkDirection.
Delta-SSSP can use a dynamically changing delta by defining the
global threshold in the algorithm interface. For comparison, this
work chooses GraphIt [5] and Gswitch [23] that explore various
graph processing options such as direction, schedule, active set data
structure and active vertex ordering.



PACT ’22, October 10–12, 2022, Chicago, IL, USA Jeong et al.

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3

OK UK TW LJ IC HW RN RU RC OK UK TW LJ IC HW RN RU RC OK UK TW LJ IC HW RN RU RC OK UK TW LJ IC HW RN RU RC
PR CC BFS DS

Sp
ee

du
p 

ov
er

 G
sw

itc
h

Gswitch GraphIt GRAssembler

3.40 6.70 9.69 5.91 6.19  5.98 3.50 4.45 6.24 7.39 7.64 4.32 4.79

Figure 8: Performance comparison with the state-of-the-art graph processing frameworks such as GraphIt and Gswitch. Each
graph shows speedups over Gwsitch. Four algorithms on nine graphs are used on NVIDIA GeForce RTX 3090 GPU.

6.1 Overall Performance
Figure 8 shows that GRAssembler improves performance for most
applications. GRAssembler achieves 2.21x and 1.30x speedups com-
pared to Gswitch and GraphIt, respectively. In detail, GRAssembler
achieves 2.33x, 1.84x, 1.66x, and 3.38x speedups over Gswitch, and
1.52x, 1.77x, 0.99x, and 1.07x speedups over GraphIt for PR, CC,
BFS, and DS, respectively.

By using function templates and fewer function arguments,
GRAssembler reduces the performance overhead coming from as-
sembling the abstract interfaces. First, this work reduces the number
of function arguments by using global symbols. Second, GRAssem-
bler uses class templates and function templates instead of function
pointers. Passing device function pointer to GPU kernel especially
complicates the compiler analysis, hence preventing useful compiler
optimizations such as inlining. Using function template binds the
polymorphic function call at compile-time, enhancing the compiler
optimizations.

In detail, GRAssembler significantly outperforms all the other
frameworks on PR and CC, thanks to the CTA size optimization. For
coalesced memory accesses, a GPU performs better for a specific
thread-size and block-size. For example, using 1024 threads is better
than 512 threads for IC and RC datasets for PR. The CTA size
optimization is effective especially for the EM schedule due to its
coalesced memory accesses to edge data. For example, for the PR
algorithm and the UK dataset, the CTA size optimization improves
the performance of EM and Push with COO, CSR, ELL with COO,
and Block-COO by 71%, 8%, 73%, and 68%, respectively.

GRAssembler also outperforms the other frameworks on the CC
algorithm, by finding different optimal solutions for topology layout
such as CSR and Block-COO depending on its dataset. Moreover,
the CC algorithm repeats the super-step until there is no update.
Since GraphIt only explores two active set options such as a bitmap
and a bytemap, it should check if every vertex is active or not, and
also check if there exists an active vertex in the active set. On the
other hand, since GRAssembler supports a counter as an active set,
GRAssembler does not need to check all the vertices to terminate
the super-step.

GRAssembler shows different optimal options for BFS depending
on its dataset as illustrated in Table 4. Unlike the other algorithms,
for BFS, GRAssembler changes the direction from pull to push

during the execution, so the optimal tuning options consists of
two sets of directions, schedules, and active set data structures on
LJ, OK, IC, TW, UK and HW datasets. GRAssembler suffers from
higher overheads than the other frameworks for BFS due to its
complex optimal tuning option and simple computation algorithm.
Since the apply function of BFS is empty, the abstraction overheads
relatively largely affect the overall execution time for BFS. Thus,
GRAssembler that abstracts graph processing more than the other
frameworks suffers from higher abstraction overheads, and shows
slower performance than them for BFS. Here, GRAssembler dy-
namically changes the schedule and active set structures when the
return value of checkDirection function is changed. This work
can improve the performance of graph processing programs like
BFS, by adopting intensive online tuning [18, 23] that supports
more than two dynamically changing options.

Finally, GRAssembler shows better results than the other frame-
works on DS. Table 4 shows tuning options used for the best perfor-
mance. QnB means using a queue for the input active set structure
and using a map for the output active set structure, and RQnB
means using a reverse queue for the input active set structure.

6.2 Tuning Performance and Cost
GRAssembler finds the optimal tuning options that have the short-
est execution time. Compared to the second optimal solution, GRAss-
embler achieves 2.04𝑡𝑖𝑚𝑒𝑠 maximum and 1.16𝑡𝑖𝑚𝑒𝑠 geomean speed-
ups. 52.78% of the second optimal tuning results adopt topology
layouts that are different from the optimal ones. This shows that
trying different tuning options is required to find the optimal so-
lution. The execution times of the optimally tuned applications
in the evaluation section range from 0.19 milliseconds to 1.17 sec-
onds (33.75 milliseconds on average), which are 1.36x to 450.33x
speedups (21.48x geomean speedup, 401.63 milliseconds on average
and up to 2.7 seconds reduction) compared to the worst cases. §6.5
shows detailed performance result of different tuning options as a
case study.

GRAssembler takes up to 2 hours for tuning each application and
dataset while GraphIt takes 10 minutes. It is because GRAssembler
explores 14 times more candidates than GraphIt. The tuning time
gap is less than 14 times because GRAssembler reduces the tuning
overheads by terminating its candidates without full execution if
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Figure 9: Extending topology layout library. (a) shows
speedup of Block-COO over COO using GRAssembler in-
terface. (b) shows speedup of GShard topology layout over
original GShard implementation of Cusha [16].

its latency exceeds the optimal one. Although the tuning cost is
relatively large compared to its execution time, tuning the graph
processing options is still important because a graph application is
executed multiple times at runtime. If the auto-tuner can exploit
the previous tuning results and prune inefficient tuning candidates,
GRAssembler can reduce the tuning cost.

6.3 Line of Code Analysis
GRAssembler separates schedule and topology layout to the sepa-
rated interfaces. The total lines of codes of schedule implementa-
tion are 1540 Lines (VM: 82, EM: 84, CM: 185, WM: 141, TWC: 292,
TWCE: 238, STRICT: 395, Interface Utilities: 123). The total lines of
topology layout implementation are 644 lines (COO: 114, ELL: 118,
CSR: 131, Gshard: 166, Interface Utilities: 115). GraphIt implements
its processing model with 1044 lines of codes, and the lines of codes
of the device functions that access and operate on the graph data
take 64% (669 Lines). To add a new topology layout, GraphIt requires
a deep understanding of its processing model code and modification
on 64% of processing model codes.

6.4 Abstraction Overhead
To shows the cost of the GRAssembler interface abstraction and in-
tegration, this work compares the execution times of GRAssembler
and GraphIt with the same tuning options. The comparison uses the
tuning options that are used for the optimal GraphIt execution. The
result shows that GRAssembler has 21.1% longer geomean process-
ing time than GraphIt. More specifically, PR, CC, BFS and DS take
15.6%, 15.2%, 34.0%, and 20.0% longer processing time on geomean,
respectively. The evaluation results show that GRAssembler suffers
from the higher overhead for BFS than other applications due to its
complex optimal tuning options and simple computation algorithm.

6.5 Case Study 1 : Extendability
This section demonstrates the extendability of GRAssembler by
describing implementations of two example topology layouts, and
shows that it exhibits equal or better performance compared to the
original implementations.

Block-COO: Blocking is a common technique for improving the
locality of the accesses to vertex values. As a case study, we describe

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Block-COO, EM, Push

CSR, TWCE, Pull
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ELL with COO, TWCE, Push
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Speedup over (Block-COO, TWCE, Push)

Figure 10: Performance comparison among different tuning
options for PR with LJ. Four topology layouts (COO, CSR,
ELL+COO, Block-COO), two schedules (EM, TWCE), and two
directions (Push, Pull) are compared. The baseline tuning
option is (Block-COO, TWCE, Push).

how a blocked version of COO has been implemented with the ab-
stractions of GRAssembler. When the neighbor edges of a vertex
are blocked into multiple edge lists, a virtual vertex substitutes the
vertex of an edge. Using the concept of virtual vertex, getNeighbor,
getEdge, and searchVID method are implemented for a blocked
graph. The getNeighbor method is written such that it returns a
sublist of the blocked edge list, and the edges in the sublist are only
connected to the virtual vertex assigned to the sublist. Figure 9a
shows that the Block-COO implementation successfully achieves
speedsup over COO up to 4.53x using Push and EM without CTA
optimization. This example shows that the proposed interface can
seamlessly integrate a blocked graph implementation. On the other
hand, GraphIt [5] allows blocking optimization but cannot pro-
vide a block-wise connected neighbor list for a vertex, limiting the
blocking optimization to the EM scheduling.

Cusha: Cusha [16] proposes a unique topology layout, Gshard,
which reorders and blocks edge data. The implementation of Gshard
on GRAssembler can be done in a similar way to Block-COO. The
separated gather and sum operation for the processing model in
Cusha is performed in apply step.

GRAssembler interface supports topologyGather that allows
Cusha implementation on GRAssembler. GRAssembler compiler
checks the presence of topologyGather, substitutes gather op-
eration in processing model by topologyGather, and integrates
the original gather operation to initTopology implementation.
Figure 9b shows that the implementation of GRAssembler performs
equal to or better than the original Cusha implementation. One
reason is that GRAssembler implementation does not use asynchro-
nous update that may incur unnecessary synchronization between
atomic updates, improving the processing time on TW, IC, and HW
dataset.
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6.6 Case Study 2 : Performance Impact of
Tuning Options

Figure 10 compares the performance different tuning options. Four
topology layouts (COO, CSR, ELL+COO, Block-COO), two sched-
ules (EM, TWCE), and two directions (Push, Pull) are used as tuning
options in the comparison. Figure 10 shows a sorted performance
across different tuning options. The comparison results show three
notable features in graph processing.

First, extending its tuning space is crucial to achieve better per-
formance. The Block-COO topology layout is used for the best
performed tuning option, showing almost two times better perfor-
mance than the second-performed tuning option (CSR, TWCE and
Pull). Since the existing frameworks do not support Block-COO,
they cannot find this tuning option.

Second, the tuning algorithm should consider the synergistic
performance effect of tuning options. The Block-COO topology
layout is used not only for the best, but also for the worst performed
tuning option, showing 4.7 times performance gap. The processing
time can be remarkably changed depending on how to combine
topology layout, schedule, and other options, and thus ignoring
one tuning option may cause a great tuning opportunity miss.

Third, various tuning options beyond schedule and topology
layout are also important. In the results, the direction largely affects
the performance. GRAssembler integrates various tuning options
including the direction, and achieves better performance results.

7 RELATEDWORK
Configurable graph processing frameworks. Existing work [5,
23, 36] on configurable graph processing frameworks separates
graph algorithms and graph processing models to support various
algorithms and provide configurable graph processing optimiza-
tions to control the scheduling plan of graph processing model.
Gswitch [23] defines five configurations: direction, active-set data-
structure, load balance (scheduling plan of GRAssembler), stepping,
and kernel fusion, considering the generality and significance of
graph program. Gunrock [36] additionally supports an active set
deduplication tuning and adds VM, EM, TWC scheduling plans to
the load balancing. GraphIt [5] supports vertex blocking tuning
knob and proposes TWCE scheduling plan. Existing graph process-
ing frameworks also support auto-tuning of the proposed options.
However, existing graph processing frameworks do not consider
topology layout as an tuning space. GRAssembler supports the
tuning spaces of the existing frameworks and extends the tuning
spaces to support topology layout.
Graph processing models. Prior work [14, 22] introduces graph
processing models decoupling algorithms from graph program.
Pregel [22] adopts Bulk Synchronous Parallel (BSP) model [33] and
proposes computation and communication models. Gunrock [36]
extends the BSP model focusing on the frontier and regroups graph
processing models as Advance, Filter, Compute. On the other hand,
PowerGraph [14] introduces Gather-Apply-Scatter (GAS) model
to separate algorithms and graph processing. An algorithm im-
plements gather operation for edge access computation, apply op-
eration for vertex data update, and scatter operation for vertex
activation. GraphQ [35] and Wonderland [38] also propose a graph

processing model for big graphs that do not fit in memory and tar-
gets out-of-core graph processing. These graph processing models
only separate algorithms and graph processing, but GRAssembler
separates topology layout, schedules, and algorithms.
Auto-tuner for topology layout. Selecting topology layout for
graph algorithms impacts the overall performance of the graph pro-
cessing. Thorsten et al. [4] provide comprehensive study of topology
layout and show that topology layout influences the performance
of graph processing algorithms, but they miss scheduling plans and
other optimizations. Existing work on topology layout auto-tuner
of sparse matrix [19, 30, 37] proposes auto-tuning methods to opti-
mize computation on sparse matrix such as sparse matrix-vector
and matrix-matrix multiplication.

8 CONCLUSION
Our insight about decoupling schedule and topology layout from
graph processing eases to enlarge graph tuning space. Based on
the insight, this work proposes graph processing abstraction of
schedule, topology layout, and algorithm based on characterization
of graph program. Then, we propose GRAssembler that implements
our processing model and abstract interfaces with various graph
processing optimizations.
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