Master’s Thesis

JSTM: JavaScript Software Transactional
Memory System

Kyoungju Sim (4 74)
Department of Creative IT Engineering
Pohang University of Science and Technology

2015

JSTM: JavaScript Software Transactional
Memory System

JSTM: JavaScript Software Transactional
Memory System

by
Kyoungju Sim
Department of Creative IT Engineering

Pohang University of Science and Technology

A thesis/dissertation submitted to the faculty of the Pohang University of Science
and Technology in partial fulfillment of the requirements for the degree

of Master of Science in the Creative IT Engineering

Pohang, Korea

12. 17. 2014

Approved by

Hanjun Kim (Signature)

Academic Advisor

JSTM: JavaScript Software
Transactional Memory System

Kyoungju Sim

The undersigned have examined this thesis and hereby
certify that it is worthy of acceptance for a master's

degree from POSTECH

12/10/2014

Committee Chair Hanjun Kim (Seal)
Member Hwangjun Song (Seal)

Member Jangwoo Kim (Seal)

MCITE 2174 5, Kyoungju Sim

20130810 jSTM: JavaScript Software Transactional Memory System,
AHtAAHE LXESJo] ERAAY vie] Al2H]
Department of Creative IT Engineering, 2015,

**p, Advisor: Hanjun Kim, Text in English

Abstract

This thesis proposes a JavaScript software transactional memory (jSTM)
system only using features of HTMLS5. As web applications become widely
used because of high portability, web applications become more
complicated. To increase the processing speed of these applications,
HTMLS5 supports web workers for JavaScript parallelization. However, the
web worker is not perfectly suitable for parallelization because web
workers do access the same memory address. In this reason, several
JavaScript parallelization systems introduce transactional memory systems,
but these systems need to install additional components. In contrast, with
the jSTM, programmers can parallelize web applications easier than lock-
based systems without installing additional components. This thesis
implemented the prototype of jSTM system, and analyzed the overhead to

improve the system.

Contents

L INEFOAUCTION .ot 2
(1. BACKGIOUNG ...ttt 5
2.1, PAralleliZatioN........cccccieeecieeecreeeetiecre et 5
2.2. Transactional MemOry SYSTEM ... sssssssssssasssses 7
2.2.1. Eager conflict detection and Lazy conflict detectionccocoeveuneene. 8
2.2.2.UNdo 10g and REAO 100ovuvereerririeieeireiseiseiesiseeeseesssisssss e sssssessenes 8
2.3. JavaScript ParalleliZationceceeeesesesssssssiesessessessnsens 9
[1l. Design and IMpPlementation ... sseeeees 10
3.1, COMMILLING PIrOCESS .ottt ses s s b ssssssassanes 10
3.2. Backup process using deep copy for global variables 11
3.3 IMPIEMENTALION.......ceeeeeeeteee et sassanes 14
3.3.1. The architecture of the parallelization system.........c.cccoevvverecrrcernnnce. 14
3.3.2. API for parallelization.............cceeerveiiieeeeeeneeeeseesessessssssesessessessssanes 16
3.3.3. EXECULION MOUEL ...ttt sesesans 17

IV EVAIUATION oottt 20
4.1. EVAlUALION FESUITS ..ottt 20
4.2. OVErhead @nalYSiS ...t sss e sassanes 22
4.2.1. The initialization OVerhead............nceencreseecseeseeseeens 24
4.2.2. The overhead Of tXEN..........cccoorerreesee e 25

V. REIALEU WOTK ..ottt ees 28
VI CONCIUSTON ottt ees 31

I. Introduction

As web applications become widely used, portability across various
platforms also becomes important. Moreover, programmers can implement
more complicated application using only HyperText Markup Language (HTML),
JavaScript, and Cascading Style Sheets. High performance is one of the main
factors for using applications, but applications cannot guarantee the high
performance as these become complicated. As a result, performance
improvement for web applications becomes important. One of the possible
performance optimization methods is parallelization because parallelized
applications can utilize multi-core CPUs more effectively. For this reason,
HTMLS5 supports a web worker [1] for the JavaScript parallelization.

The web worker is a JavaScript thread that runs in the background with a
main HTML page. Because the main page can execute several workers,
applications can use web workers for performing works in parallel. However,
the web worker supports a limited parallelization because each web worker
uses its own contents and does not share these contents with other workers.

Threads for executing the parallelized application need to share the memory
because several threads can access same memory address at the same time,
so the web worker is not perfectly suitable for parallelization. For this reason,
the parallelization system needs to introduce a shared memory system such
as a lock-based or a transactional memory mechanism. However, the lock-
based system is difficult to use and error-prone, so parallelization systems
introduce the transactional memory system for ensuring correctness of
parallelized applications more easily than lock-based systems.

In addition, several JavaScript parallelization systems such as TigerQuoll [2]
or ParaScript [3] introduce the transactional memory system. However, these
systems need additional components for parallelizing such as Mozilla

SpiderMonkey [4] for TigerQuoll or TraceMonkey [5] engine for ParaScript [3].
-2 -

In this reason, these systems have a limited portability.

Meanwhile, previous JavaScript parallelization systems introduce various
parallelization methods such as DOALL. These systems can increase the
performance of applications but parallelizes loops limitedly if dependencies
exist between loops. To solve this problem, some JavaScript parallelization
systems use speculative parallelization methods. For example, ParaScript [3]
utilizes the Spec-DOALL method for parallelizing applications speculatively
with the DOALL method. These speculative parallelization systems can
parallelize more kinds of applications than non-speculative methods because
speculative methods can remove some instructions speculatively if these
instructions have dependencies and low probability of execution.

This thesis proposes a software transactional memory system for JavaScript
(]STM) only using features of HTML5. This system aims that programmers can
parallelize applications easily with less limitation unlike the current web worker.
For this, this thesis implemented the JavaScript parallelization APl using the
transactional memory. After defining the unit of works and read & written
variables using the API, applications can be parallelized.

Contributions of this paper are as follows:

(1) Introducing the transactional memory, programmers can easily
parallelize applications speculatively without using a lock-based system.
(2) Without installing additional components, parallelization is available in

most browsers.

The remainder of this paper consists of as follows. Section 2 describes the
background for the JavaScript speculative parallelization and the transactional
memory. Section 3 explains about the design of the system and what features
need to be implemented. Section 4 shows the evaluation for the processing

speed of some benchmarks using parallelization comparing with the

-3-

processing speed before parallelization. Section 5 compares our system with

other parallelization systems, and finally, Section 6 concludes the paper.

Il. Background

2.1. Parallelization

Controlling the frequency of a CPU core has a limited impact on increasing
the processing speed because of the memory wall, the ILP wall, and the
power wall. For this reason, CPU manufactures choose a multi-core design for
improving the performance. For utilizing the multi-core system effectively,
using multiple cores simultaneously is necessary. However, programmers
previously did not implemented applications with a consideration for parallel
programming. As a result, several parallelization methods are suggested such
as DOALL for parallelizing these applications.

With the DOALL method, threads execute iterations independently and
simultaneously. Figure 1 shows an example for DOALL parallelization.
Because an instruction B uses the value of nodeldx that is from an instruction
A, the instruction B has data dependency on the instruction A (Figure 1b).
Data dependency exists in the iteration, but any dependency between
iterations does not exist. In this case, DOALL can parallelize loops. As a result,
each CPU core executes iterations simultaneously (Figure 1d). With DOALL,
CPU cores do not need to communicate with each other because CPU cores
execute iterations independently, so the overhead for parallelization is low.
However, DOALL cannot parallelize loops if dependencies exist between
iterations.

To mitigate this limitation, speculative parallelization methods such as Spec-
DOALL [6] are suggested. Using analyzed data (e.g., as profiling information),
these methods remove dependencies speculatively for increasing the chance

to parallelize.

A for (idx = 0 idx <100 ; idw++) { Cure1:CurEZ Corel Core?2

B: nodefidx] += nodevar[idx] * node[idx]; a1]
(a) Example Source code Bl] B1 i B2
a2 | i A3 i A
B2 | i B3 | i[B4

B L) E E

— Data dependence B3 E3

v : v

{b) Program dependence graph (c) Original code {d) DOALL

Figure 1. Example for DOALL. (a): Example source code, (b): Program dependence
graph of (a), (c): Diagram of each instruction executed in CPUs before parallelization,
and (d): Diagram of each instruction executed in CPUs after using DOALL method.

_ _ _ Core 1 Core?
Al for(idx =0; ide <100 ; ide++ 34 :

B: nodefidx] += nodeVarfidx] * node[idx]; [a1] [22 |
C: if (nodefidx] ==null 3§
D: | hireak; I B I | B2 |
} X
{a) Source code .
. ¥ [B3 | | E4 |
- k wat o :
AT B "|_|' '|_|' [25] i [26]
¥ ¥
— Data dependence [Bs] i [Bs]

Speculatively removed

=== Control dependence
{b) Program dependence graph {C) SpecDOALL

Figure 2. Example for Spec-DOALL. (a): Example source code, (b): Program
dependence graph of (a), (c): Diagram of each instruction executed in CPUs after
using Spec-DOALL.

Spec-DOALL removes dependencies between iterations if these
dependencies have a little chance to occur. After removing dependencies, the

Spec-DOALL method can parallelize loops using the DOALL method. Figure 2

-6 -

shows an example for applying Spec-DOALL parallelization. Originally, DOALL
cannot parallelize a loop in Figure 2a because of control dependency that
exists on instruction D. However, Spec-DOALL can remove these
dependencies like Figure 2b if instruction C and D have little chance of
execution. After this removing process, Spec-DOALL parallelizes the loop like
Figure 2c. If speculations are wrong in some iterations, the Spec-DOALL
system recovers statuses before executing the misspeculated iteration and
executes the original iteration. This recovering process causes the additional

overhead.

2.2. Transactional memory system

Using parallelization, threads need to access the same memory address. To
ensure the correct result of the parallelized program, synchronization between
threads is necessary. For this reason, several synchronization methods are
suggested such as using the lock-based synchronization. However, the lock-
based synchronization is hard to use and error-prone method because
programmers must use the lock with considering that errors such as deadlock
do not occur. To solve this problem of the lock-based system, a transactional
memory (TM) is introduced.

A transaction is a sequence of atomic instructions, so a thread executes all
instructions from the transaction or does not execute them at all. After
committing written values in a transaction, other transactions can use these
changed values. On the other hand, when conflicts occur with other
transactions, so that an instruction in the transaction accesses the wrong
value of memory, other transactions must not use changed values by this
transaction. In this case, the TM system discards all written values from the
transaction that has conflicts. Using this mechanism, multiple threads can

access the same memory address safely.

-7 -

To manage TMs, the system selects between several mechanisms. The TM
system needs to decide when the system checks conflicts between
transactions and decide when the system applies changes of values from
write operations. Section 2.2.1 and Section 2.2.2 describes mechanisms for

each.

2.2.1. Eager conflict detection and Lazy conflict detection

The TM system detects conflicts for each memory access or at the end of
each transaction. A mechanism for the former is the eager conflict detection
and for the latter is the lazy conflict detection. With the eager conflict detection,
the TM system checks conflicts for each memory access in a transaction
because read and write operations from the transaction are visible to other
transactions. On the other hand, with the lazy conflict detection, the TM
system checks conflicts between a transaction and already committed
transactions.

The eager conflict detection is not effective for the jSTM because the jSTM
system utilizes the web worker and web workers do not share their own
contents such as memory access records. In this reason, jSTM uses the lazy

conflict detection.

2.2.2. Undo log and Redo log

To commit or to abort written values in transactions, the TM system uses an
undo log or a redo log. Using the undo log, write operations in a transaction
directly changes the value that stored in the memory. In addition, the TM
system makes an undo log for recovering changed values when a conflict
occurs.

On the other hands, write operations in a transaction do not directly
changes the value when the system uses the redo log. Instead, the system

records values and memory addresses that write operations aim to change.

-8 -

Each transaction records access for read operations in a read set and for write
operations in a write set. When comparing access records from the read and
the write set, so that any conflict does not occur in the transaction, the system
applies value changes using the redo log during the commit process. The

JSTM system uses the redo log with the lazy conflict detection.

2.3. JavaScript Parallelization

To implementing the TM system, the commit unit and the recovering process
for solving conflicts are necessary. Previously, several papers such as [7, 8, 9]
implement the software transactional memory system (STM) using C or C++
language. However, C language and JavaScript language have difference
structures, so the jSTM system needs to consider that. Table 1 shows the
main difference between C and JavaScript language for implementing the TM
system. First, JavaScript is the event-based language, so JavaScript is difficult
to use synchronization basically because the event-listener operates
asynchronously after the event occurs. Moreover, each worker does not share
the same memory area. In this reason, the JavaScript-based system is difficult
to introduce the lock-based STM like [7, 10] without modifying the JavaScript
engine. Moreover, unlike that C language can access variables in the low-level
with the memory address, JavaScript language can only access variables as
the object. In this reason, the copying process for recovering uses the deep-
copy mechanism in JavaScript. That is, the copying process copies all values
of attributes for all objects. Section 3 describes details about how the jSTM

solves these problems.

Table 1. The main difference between C and JavaScript for Spec-DSWP

C JavaScript
Synchronization Available Not available
The way to access memory Using the pointer Using the object

lll. Design and Implementation

This thesis implemented the STM system and the speculative parallelization
API using JavaScript language. This system aims to provide parallelization
easily without any additional installing modules, so the [STM system only uses
features of HTML5. Meanwhile, as describing in Section 2.3, this system
needs to apply the difference between C and JavaScript to introduce the STM
system in JavaScript. Section 3.1 and 3.2 describes how this thesis
implements the system considering these differences: Section 3.1 describes
how this thesis implements the commit process without the lock, and Section
3.2 explains how this thesis implements the recovering process using the
deep-copy mechanism. Section 3.3 describes the architecture of the
parallelization system using the transactional memory and the mechanism for

parallelizing with the API.

3.1. Committing process

The jSTM system introduces the separated validation and committing
process. Because each worker thread (i.e., threads that execute parallelized
loop) uses separated memory area, a worker thread cannot validate its
records of memory accesses nor cannot commit for other worker threads to
use changed values. For this reason, the jSTM system separates the
committing process from worker threads. The committer gets speculative
records from worker threads, and validates and commits records. As a result,
all worker threads share memory states of the committer.

In addition, the system uses an in-order commit to guarantee the
correctness of the execution result. Figure 3 shows how transactions in worker
threads and the committer work using the in-order commit. Each CPU core
has an identifier (ID) and each transaction also has an ID, so CPU cores only

execute transactions that have the same ID as theirs. For example,

-10 -

Corel Core? Core3d

~ Ioooy |, (Do1y . (D2 . Cored
[iter1(D:m | i E.I: :I. P ': :I.i
. [ter 1 ———
Iter 2 (ID: 1) tero | :
lter 3 (D: 2) ,' i | fters
[ersiomy | tera | it i—=i| cormmit
i otters | f :
Iter 5 (10 1) —: | ferd | :
o [1 L] : Commit2
Iter & (D 23 i 1 [] :
ter7 | i i
[ter7(D:0)y | il ters
" —— : Iter 9
[] executed by cpun . . .
* Mat executed by CPUM .
-
{a) Transactions for the Core 1 {b) Transactions for all CPU cores

Figure 3 Example for the in-order commit process. (a): transactions that executed or
not by CPU core 1, (b): figure for how workers and committer works; gray one is
empty transaction. Each transaction from core 1-3 communicates with the core 4 for
the committing process.

in Figure 3a, Core 1 that has an ID 0 only executes the transactions that have
an ID 0. Otherwise, Core 1 does not execute instructions of other transactions,
so Core 1 executes these transactions as empty transactions. After worker
threads send records of memory access to the committer, the committer store
these records. If the committer gets at least one memory-access record from
each CPU cores and the committer did not validate and commit these records
yet, the committer starts to validate these records. As the result, though all
CPU cores execute each transaction independently, the committer validates

and commits transactions as same order as the original sequential program.

3.2. Backup process using deep copy for global variables

The jSTM system uses the deep-copy mechanism for making checkpoints
of global variables. JavaScript is the object-oriented language, so JavaScript

accesses variables as the unit of object. Because JavaScript does not use a

-11 -

pointer like C language, the]STM system cannot access the memory in the
low-level. For this reason, the j[STM system copies the name and all property
of objects using the Object.keys() method.

The Obejct.keys() method returns properties of objects as an array of string
values, so worker threads make a checkpoint of global variables utilizing this
method for the recovering process. Figure 4 shows an algorithm for making
checkpoints of global variables automatically. First, using the Object.keys()
method, a worker thread gets all names of global variables from its memory
area. In this case, the worker thread removes properties not defined by a
programmer to reduce the overhead for copying (Figure 4a: line 2-3). Then,
the makeCheckPoints function checks the type of each global variable. If a
global variable is an object type, this function makes copies of all properties of
objects using the copyContents function (Figure 4a: line 5-6). Otherwise, this
function makes copies of value of the global variable (Figure 4a: line 7-8).

The copyContents function performs differently for array type objects and
other objects. For arrays, the copyContents copies all contents of array
(Figure 4b: line 3 7). Otherwise, the copyContents copies both a prototype and
properties of objects (Figure 4b: line 8-12). To check and copy all properties of
objects, the copyContents check recursively if type of each property is object.

When misspeculation occurs, the worker thread recovers all global objects
defined by the programmer using copied values of objects. However, this
method cannot make a copy of local variables because local variables are not
accessible programmatically with this method. Instead, the programmer can

make the copy of local variables using the parallelization API.

-12 -

A aiiecthanme st of giohal varighies 1 g warker thresd
A MohgiOiect each varialie name ot offecthame
AvaivelrGiabaiObect value of QobalQiiect
A oheckPoints, grgy v saving coples of ginhal variahies
1 woid makeCheckPoints(){
2 objectMame = Ohject. keysithis)
A dedete pimhal variahles not defined e users o the fst

3 spliceCbjectsMotDefinedBylUsers(objectMName?;
4 for (globalObject in objectMame) {
Acap the valle of giohal oifect to the TheckPoints’
i if { bypeof globalChject == ‘ohject)
G checkpoints[property] = copyContents(valueOfGlobalObject);
¥ else
8 checkpoints[property] = valueCOfGlobalOhject
9 }
101
(a) Functon for making checkpoints
Aretums copledOfectithe capy of glfect)

1 copiedObject copyContents] gObject) {
2 if (typeof gOhject == "ohject’ 3§
3 if { typeof gObject == "array’) {

ooy gi comtents of g aray
4 for (i =10; 1 <value length; i++)
5 copiedDbject(i] = copwContents(iy;
6 return copiedChject;
7 }
g else{

Aoopr gif prapeities of 28 oiject
L for { property in gOhejct)
10 copiedObjectproperty] = copyContents(property?;
11 return copiedOhbject;
12 1
13 '
14}

(b} Deep-copy function for copying objects

Figure 4 Algorithms for making checkpoints. Function (a) uses the function (b) for
copying all properties of objects.

-13 -

- Workerthread
Main thread > 1
o Weh worker)
Warker- ;
initializer]
&
,,,a" Workerthread
"I:-:: --------- = 2
Validatar Say finfeh warker)
"i
i
]
i
Committer .
hey Workerthread
R "l-...,‘_h n
eh worker
#==p . hi-directional channel o)

Figure 5. Architecture of the parallelization system

3.3. Implementation
3.3.1. The architecture of the parallelization system

Figure 5 shows the architecture of the parallelization system using jSTM.
This system has two kinds of threads: the main thread and worker threads.
The main thread executes the main HTML page and worker threads are web
workers for parallelized works. The main thread and each worker thread are
connected bi-directional, so the main thread sends variables for initializing at
the beginning and the copy of variables after misspeculation occurs to worker
threads. In addition, the main thread receives records of speculatively access
for validating and copies of variables for preparing the recovering process
from worker threads.

The main thread consists of the worker initializer, the validator, and the
committer. The worker initializer initializes worker threads, and the validator
and the committer checks conflicts and commits speculative writes. Actually,
the main thread executes the validator and the committer together if worker
threads send values. Figure 6 shows an algorithm of validating and committing.

First, the validator checks whether or not conflicts exist in each iteration:

-14 -

1 woid validateMcommit() {
2 spechfaluelist = getTheSpecRecord(), & gef records of speculztive records
3 for (walue in specvaluelist) {
4 it (value is from write set){
A save the value fam wiite set temporanily before comumnit

5 putToTempList(value
6 }
7 else if (value is from read set) | & check the ansaction resd correctiy
8 if { walue == undefined }{ & get e commited valve
9 committedvalue = getTheCommittedvalue nameOfvalue
10 it (value 1= committedvalue 3 {
11 status = misspec;
12 hreak;
13 1
14 }
Aommeaning the read value and wicornmied valie

15 else If {value |= getFromTempList{ nameOfvalue 3§
16 status = misspec;
17 hreak;
18 '
19 }
20 }

Aot specuigtive wiitten vailes
21 if (status 1= misspec) commitvalues(templist)

Adiscand speciative valie and fecaver mesmal states
22 else
23 discardallrites(templList)
24 terminatesllw orkerThreads(y;
25 executeMTXSeqguentiallyy;
26 restartMextStage(y
27 1
28

Figure 6 Algorithm for the validator and the committer

If an iteration read speculatively a wrong value, the validator considers that
conflict exists in this transaction. The comparison target can be a previous-
committed value (Figure 6: line 7-14), or an uncommitted value from previous
iterations (Figure 6: line 15-18). After validating, the committer applies
changed values to the memory if conflict does not exist (Figure 6: line 21-23).

If conflict exists in the iteration, the main thread discards all record of

- 15 -

speculative writes and terminates all of currently running worker threads. Then,
the main thread executes the misspeculated iteration without speculation and
reinitializes worker threads for restarting later iterations (Figure 6: line 23-26).
These workers will execute the recovery process before executing later

iterations.

3.3.2. API for parallelization

This thesis implemented the Parallelization API to the JavaScript library.
Programmers can use this parallelization API by adding the implemented
JavaScript library without any changes of the web browser: Programmers use
the API for initialization and execution threads in the main thread and use for
defining and using MTXs in worker threads. Table 2 shows components of the
API that users can use for parallelization.

The overall execution flow of the main thread and worker threads is
described as follows: When the main thread executes executeTx after
executing createChannels for initializing, executeTx function triggers for the
worker threads to start executing. After receiving data from the main thread,
worker threads start to execute their transaction. First, worker threads call
txBegininvocation at the starting point of a loop. txBeginlnvocation recovers
the memory state if conflicts occurred from previous iterations. Then, worker
threads call txBegin at the beginning of iteration. This function makes a copy
of global variables for the recovering process. On the other hand, txCopy
makes a copy of local variables if the programmer wants to backup. During the
transaction, txRead records read operations for making the read set and
txWrite records write operations for the write set. When worker threads call
txEnd at the end of iteration, threads send their read & write records for
validating and the copy of variables to the main thread. To reduce the
communication overhead, tXEnd sends the copy selectively when the value of

variable changed in the transaction. At the end of the loop, txEndInvocation
- 16 -

Table 2. API for speculative parallelization

For the main thread

createChannels

This is for initializing worker threads. This function creates and
initializes web workers.

executeTX

With given arguments, let worker threads start transactions.

For worker threads

getThreadNum
getMyThreadID

These functions are for executing iterations selectively.
getThreadNum returns the number of worker threads, and
getMyThreadID returns the ID of the worker thread.

txBeginlnvocation

It indicates the starting point of a loop.
If conflicts occurred in the worker thread previously, memory-
state recovering function will be executed.

txBegin

It indicates the starting point of loop iteration. If conflicts did not
occur previously, this function makes copy of global variables to
the main thread for preparing the recovering process when
conflict occurs later.

tXWrite

This is for the write operation. This function saves names and
values of written variables for the write set.

txRead

This is for the read operation. This function saves names and
values of read variables for the read set.

txCopy

This function is for making copy of local variables. The
recovering process will use copies after misspeculation occurs.
If misspeculation occurred before, this function returns the
copied value.

txEnd

It indicates the end point of loop iteration. This function sends
copies of variables only if these are modified and send the
records of speculatively access.

tXxEndInvocation

It indicates the end point of a loop

triggers for the main thread to stop validating. Figure 8 shows the example of

speculative parallelization using these functions. This example parallelizes the

source code of Figure 2a. Each transaction executes the iteration as if

node[idx] has a specific value, so misspeculation occurs if some iteration

reads empty node[idx].

3.3.3. Execution model

Using the parallelization API, the parallelized loop consists of the prologue,

the loop, and the epilogue. In addition, the loop consists of several iterations.

Figure 7a shows the execution model of the parallelized loop. After the main

thread triggers for the worker threads to start executing, each worker thread

-17 -

Prologue

]

Loop

[
[

[Iteration
I : I:l cdefined inworker threads
[Interlude

!

Epilogue

I:l s defined in the main thread

{a) Execution model

createChannelsithreaddum, ‘testworker js, ‘beforeGetinfo’,
‘afterzetinfo, “afterPIt, seq_getinfo™y

(D) Prologue, epilogue, and interdude function in the initializing function

Figure 7 (a): Execution model of parallelized loop for each worker thread, (b):
example source code for initializing the worker thread from Figure 8.

executes the prologue function at first. After that, worker threads start to
execute the loop. After executing iterations in the loop, the main thread
executes the interlude function after committing if misspeculation does not
exist. Finally, worker threads terminate after executing all iterations of the loop,
the main thread executes the epilogue function.

The main thread has codes of interludes and the epilogue, and worker
threads have codes of the prologue and the loop. When the programmer uses
createChannels for initializing the worker thread, the programmer must specify
functions for the prologue, interludes, and the epilogue like Figure 7b that is
the part from the source code of Figure 8. For this example, the prologue
function is beforeGetinfo, the interludes function is afterGetinfo, and the

epilogue function is afterPIl function.

-18 -

A iialize worker reads

A= T e gt e number of wirker res o,

& - 2ndife name of Sara Sonit e,

& - g the name of the proiogiie inctios,

A - R ihe Rarme of e funclion exectied aiter fevations

& - il the Rame of e funclioy exyecied afler exveciing e foob,

& - gt the Rarme of e non-specidialive ineticn exvecfed s sreciialicn coctirred,

createChannelstthreadMum, testwiorker js°, ‘heforeGetinfo’,
‘afterGetinfo’, afterPIl, ‘seq_getinfo®;

A Ever e wioker rea s WA argues

executeTXEnode: node, nodeyar nodeyar);

{a) Part of HTML source code for the main thread

function beforeGetinfolarg)
{
varnaode = arg.node;
varnodelar=arg.node'ar;
pgetinfolhode, nodeyar;
YA e pringue Runclion” egof Wikker thresd erecute s s funciice? freis
funcliongetinfolnode, node'yar

{
A get the number of reads and 10 of &2 worker fread
varthreadtum = getThreadiNum;
varthreadD = getyThreadID;
Beginlmvacationd; & e staing poit of e oo
varendPt=tCopy("endPt”, 100); & backiooai varabier for prepaiing s sre cliation s
for {warids =CopyMdx”, 00 idx = endPL idx++){
wBeqind; & he slarling poini of the feraticn
if{idy % size = threadID) { & /or evecuiing iransaciions sefeciivelr
WENdD; &0 covd e e sa o
confinue;
1
Read{"hode["+idx+", nodelidx]);, & made e record for e read sl
nadefidx] = nodevarfidx] * node[idx);
ttrite"node[*+idx+"T", node[ids]); & g Mhe record for e wnite el
WENdD; & e ead poit of the feraiion
1
EndInvocation; & e end gl of the foop
1

{b) JavaScript source code for worker threads(testWorker.js")

Figure 8. Example of parallelization using the parallelization API. This example
parallelizes the source code of Fig. 2a.

-19 -

Table 3. Ratio of execution time for time-consuming function and ideal speedup for
parallelized benchmarks. Ideal speedup is calculated using Amdahl's law.

Ideal speedup
benchmark Description® Ratio [%] | 4 threads | 8 threads
2mm Multiplication two arrays 99.84 3.98 7.91
3mm Multiplication three arrays 99.84 3.98 7.91

covariance Computing covariance 99.91 3.99 7.95
doitgen Multi-resolution analysis kernel 99.61 3.95 7.79
dynprog Dynamic programming 99.99 4.00 8.00

gemm Matrix multiplication 99.91 3.99 7.95

V. Evaluation

This thesis implemented the prototype of the jSTM system. To evaluate the
performance of the [STM system, evaluated and compared execution times of
between the original and the parallelized source code of benchmarks.
Moreover, to improve the j[STM system, this thesis also analyzed the overhead
of the system for each benchmark.

For evaluation, this thesis utilized the polybench benchmark set [11].
Originally, the polybench benchmark set has total 30 benchmarks, but this
thesis parallelized 6 benchmarks using DOALL method with the parallelization
API?. This thesis used 16 GB RAM and 3.40GHz Intel® Core™ i7-4770
machine that has 8 cores. In addition, this thesis executed benchmarks using

Google Chrome 39.0 version.

4.1. Evaluation results

This thesis parallelized 6 benchmarks in Table 3 and executed using 4
threads and 8 threads for evaluation. Figure 9 shows speedup of parallelized
benchmarks using 4 threads (Figure 9a) and 8 threads (Figure 9b). Multiple

threads could execute parallelized loop simultaneously using the

! Description is from [11].
% Because the original source codes are implemented using the C language, this
thesis ported source codes to the JavaScript version.

-20 -

Execution time (using 4 threads)

w
=
1

Speedup
ol
=

[y
=
L

D’.D’ n |.

2T a® (@it gt yap0F o™
Benchmarks
{a) Using 4 threads
Execution time (using 8 threads)
8.0 1
o 6.0 4
=
o 4.0 -
Q
o
o0 4
Benchmarks
{b) Using 8 threads

W Evaluated result

O Ideal performance

Figure 9. Speedup of parallelized benchmarks using 4 threads (a) and 8 threads (b)

parallelization API, but speedup of each benchmark was less than the ideal

speedup because of the overhead of the prototype jSTM system: The average

speedup using 4 threads was 1.07 and the average speedup with 8 threads

was 1.17. Especially, the overhead sharply increased when using 8 threads.

-21 -

4.2. Overhead analysis

Because the overhead of the prototype system was bigger than ideal
execution time, so this thesis evaluated and analyzed the overhead to improve
the system. When the programmer uses the DOALL method, main factors of

the overhead are as follows:

- Initialization overhead: Initialization overhead occurs when the main
thread initializes worker threads and sends arguments to them. This

overhead contains the communication overhead.

- Overhead of txWrite: txWrite saves all record of memory access for
writing. The overhead becomes large if many writing operations exist in

a transaction.

- Overhead of txEnd: txEnd sends the record of write operations, so this
function includes the communication overhead. If a size of record

becomes larger, the overhead of this function also becomes larger.

- Overhead of txEndInvocation: txEndIinvocation notifies that a worker
thread finished executing the parallelized loop to the main thread. This

overhead also contains the communication overhead.

- Overhead of the committing process: The committer receives records
of write operations from workers and applies them to the main memory.

This overhead becomes larger when the size of records becomes larger.

- Overhead of synchronization: Because the main thread does not send
arguments to all worker threads simultaneously, worker threads do not
start to execute instructions at the same time. In this reason, the main
thread needs to wait for all worker threads to finish executing

instructions.

-22 -

Total execution time (using 4 threads)

100% -
80% - |
60% -

40% -

20% -

0% o : : : .

2000 31“"‘; maﬁaﬂ-" aonee” “ﬂﬁ“ﬁ ger™™

Ratio[%]

Benchmarks
(a) Using 4 threads

Total execution time (using 8 threads)

1009 -
= ﬁ =
B0%% 4
| —— |
60% H
A0
209 -J
oo | N b .

Ratio[%]

2000 311\“; a0 gote" g pr0® gom™

Benchmarks
(b) Using B threads
B Useful work M Initialization W iWrite @ txEnd
O txEndinvocation B Commit OSynchronization

Figure 10. Ratio of overhead for each parallelized benchmark using 4 threads (a) and
8 threads (b).

-23-

Table 4. Size of sending data for each worker thread and ratio of communication
overhead to initialization overhead.

Ratio [%]

Benchmarks | Data size [Byte] 4 threads 8 threads
2mm 32000048 95.93 99.52
3mm 32000064 98.52 99.04
covariance 64000040 98.35 99.99
doitgen 216002724 99.99 99.99
dynprog 160016 96.03 99.99
gemm 96000040 99.88 98.93

Figure 10 shows the ratio of each main factor for parallelized benchmarks.
Especially, the overhead for initialization and the overhead of txEnd occupy
high proportion, so this thesis analyzes and describes about these two

overheads.

4.2.1. The initialization overhead

The initialization overhead that is from createChannels and executeTX
function mainly affected the overall performance in the case of 2mm, 3mm,
doitgen, and gemm benchmarks. Because these benchmarks used the large
array objects for calculating as Table 4 shows, executeTX function needed to
send the big data. In this case, the initialization overhead became bigger when
the size of array objects became bigger. For example, the executeTX function
at the line 13 in Figure 11 sent arguments and A, C4 and sum were array-type
variables. Especially, A and sum were three-dimensional arrays, so the
overhead for communicating between the main thread and each worker thread
increased as the size of arrays became bigger.

Moreover, because the jSTM system uses one main thread, the main thread
sends arguments to only one worker thread at once. In this reason, the
number of threads also strongly influenced the initialization overhead: the
overhead when using 8 threads was larger than using 4 threads for the most

case of benchmarks.

=24 -

ACNEAR_ KD NOQPEER_G) RerEang gl aiguient for deciding anay sire
A gngy Afniingiinel Cdinelnel are arays Lred for cafcuistion

A giegy sumimeingiinel is argy used far saving rest

ACIRIE_geeays function for itiaizing anays

Asemdan qg qp and araysid, 04, sum) o worker treads

1 functon executor (arg_r, arg_d, arg_p, threadMum) {
2 nr = arg_r,;

3 ng =arg_d,

1 np =arg_p,

H] init_arrasy (r, no, np, A, G473

6

7 forivarr=10;r < nr, r++){

L] sum[r] = [

9 forivarq=20;q < ng, g++ 3 sum[r][q] = [

10 1

11 createChannels(threadhurm, "doitgen_pll_woarker.js', 'kernel,
12 ‘interlude’, ‘printExecTime" 3

13 executeTX({nr nr, ng: ng, npe np, A0 A, C40 C4, sum: sum}
14
Figure 11. Part of source code for initializing and executing worker threads of doitgen

4.2.2. The overhead of txEnd

The overhead of txEnd function mainly affected in the case of covariance
and dynprog benchmarks. Especially, as Table 5 shows, the overhead of
txEnd function increased when the total size of the record of write operations
became bigger.

In the case of covariance, the size of the record for write operations affected
the overhead of txEnd. Figure 12 shows each iteration in parallelized loops
from the kernel_covariance function and the kernel_covariancel function. In
these functions, txWrite functions (Figure 12: line 17, 21 / line 42, 45) made
the record of write operations. In this case, the size of records became bigger
as the number of iterations in the kernel covariance function and the
kernel_covaraincel function increased. As the result, txEnd function must

send the large size of records, so the communication overhead also increased.

- 25 -

Table 5. Data size per each transaction and the number of transactions for each
worker threads. This thesis divided the time-consuming function of 3mm and
covariance into two parts and parallelized them. In the case of covariance, the data
size and the number of transactions are different between two parts, so this thesis
writes both data.

Number of transactions
Benchmarks Data size [Byte] 4 threads 8 threads
2mm 8000 4000 8000
3mm 8000 12000 24000
16008 8000 16000
covariance 16n
(1= n <2000, n: iterator) 8000 16000
doitgen 2400 1200 2400
dynprog 8 400000 800000
gemm 16000 8000 16000

In addition, in the case of dynprog, because many transactions from several
threads sent records of write operations but the main thread could execute the
commit process for the record from one transaction at once. In this reason, the
proportion of overhead of txEnd of dynprog was high though data size of

iterations was relatively small comparing to other benchmarks.

As a result, communication overhead mainly affected the overall
performance in the case of the initialization overhead and the overhead of
txEnd. In this reason, a method for decreasing the communication overhead

with other threads is necessary.

- 26 -

Acgictiate the mean of e3ch Yow of dsta away
s and subtracts this value to each vailve of dats aray
1 functon kernel_covariance (m, n, float_n, data) {

13 mean(j] = 0.0,

14 for(vari=0;i<n; i++)

15 mean[j] += data[i][j];

16 rnean(j] /= float_n;

17 teWirite] "mean["+j+"]", mean[j] %

18

19 forivari=0;i<n; i++ 3§

20 data[i][j] = mean[]];

21 taWirite] "data["+i+"]["+j+"]", datalil[] i
22 }

26 }

27 Sogicwiate the covariance orthe ogtag aray
28 function kernel_cowvariance? (m, n, data, symmat) {

39 for(varj2 =j1; j2 < m; j2++ 3

40 symmat(j1][2] = 0.0;

a1 forivari=10;i<n;i++)

42 symmat[j1][j2] += data[i][j1] * data[i][j2];

43

44 trite] "symmat["+j1+"]["+j2+"]", symmat[1]02] &
45 symmat[j2][j1] = symmat[j1][2];

46 tWrite] "symmat["+j2+" 1 +"" symmat[2][1] %
47 }

51 1

Figure 12. Part of source code for worker threads of covariance.

-27 -

V. Related work

Because using the lock for parallelization is difficult and error-prone for
programmers, previous researches implements TM systems using various
mechanisms. Especially, this thesis introduces several STM systems: McRT-
STM system and TL2 algorithm.

A Multi-core runtime software transactional memory system (McRT-STM) [7]
is the lock-based STM system that operates on an experimental runtime
system. The McRT-STM system implements transactions by using the strict
two-phase locking protocol instead of the non-blocking protocol. With
evaluating the performance of several alternatives of STM designs, this
system selects to use the read-versioning mechanism with writer lock and the
undo-log mechanism. In addition, this STM supports both the per-object and
the per-cache-line conflict detection, but this paper shows the performance of
benchmarks using the cache-line based conflict detection mechanism for
focusing to the high performance. Actually, when using benchmarks, the
McRT-STM system is faster than lock-based systems. However, the McRT-
STM is not faster evidently than the lock-based system when using the real
application.

A Transactional locking Il (TL2) algorithm [10] is a STM algorithm which
uses a global version clock. Write transactions increase a value of the global
version clock for managing a version number, and transactions read this value
for validating a read-set. The TL2 algorithm supports the write-lock per object
for C or C++ and per stripe for Java, but an efficient memory management
mechanism does not exist for C and C++ in [10]. In this reason, this paper
implements the TL2 algorithm using the Java language. With adding the TL2
algorithm manually, performance of a parallelized benchmark is faster than
using a single mutex lock. However, this paper only evaluates performance of

the red-black tree benchmark, so other types of benchmarks can have

-28 -

different aspects of performance with evaluated data.

To increase the speed of JavaScript applications, several researches
developed JavaScript parallelization systems. For considering that multiple
threads access the same memory address, these researches introduce
various methods. For example, this thesis explains about DOHA that uses
data-communication APl and River Trail that supports immutable access.

DOHA [12] is the JavaScript parallelization system that utilizes the web
worker. This system consists of event-loop and MultiProc that manages states
and schedules events for load-balancing. Because the original web worker
does not use share memory, DOHA uses a publish-subscribe based
communication APl and RPC events to share states. However, with this
publish-subscribe API, workers use copied states and all of these copies need
to be synchronized when one of workers updates copied states. As a result,
the communication overhead is high because all of workers must update
shared states when the public-subscribe layer sends the message for
updating states.

River Trail [13] supports a programming model and a data-parallel API with
a newly defined data type for JavaScript parallelization. This system cutilizes
GPUs for parallelization, so parallelized applications gains high performance.
For access the same memory address between multiple threads, River Trail
introduces the immutable access. That is, child threads cannot change global
states of a parent thread and the parent thread can change local states after
all child threads finish their works. Meanwhile, the River Trail system uses the
modified SpiderMonkey [4] that is a JavaScript engine in FireFox. This system
also uses a compiler for porting JavaScript language to OpenCL [14], so
GPUs execute the parallelized application using the OpenCL binding for
FireFox. In [13], the River Trail system is implemented only in FireFox, so the

evaluation process also utilizes FireFox. That is, this system can operates in

-29 -

only limited environment.

In addition, some JavaScript parallelization system utilizes the transactional
memory system to support memory access for multiple threads. For example,
TigerQuoll and ParaScript utilize the STM system.

TigerQuoll [2] consists of the event-based APl and the runtime system for
JavaScript parallelization. This system provides the mutable shared memory
space, so workers can communicate with each other. TigerQuoll adopts the
transactional memory system for parallelization system. Similar to the TL2
STM, TigerQuoll uses the lock-based transactional memory that uses the
global versioning clock, but differently from the TL2 STM, TigerQuoll provides
the write-lock per field. Using the version number, TigerQuoll validates the
read set and the write set.

ParaScript [3] supports automatic speculative DOALL. For supporting
speculative parallelization automatically, ParaScript firstly selects hot loop, and
then, the parallel-code generator generates parallelized bytecodes. ParaScript
utilizes the STM system for parallelization, but not fully utilize the STM system
for reducing the overhead. Instead, ParaScript checks conflicts of object
arrays using the reference counting mechanism and the range-based
checking mechanism for each memory access. If the system detects a conflict,
the recovering process recovers a stack pointer and a frame pointer to start
execution at checkpointed location.

Unlike DOHA and River Trail, TigerQuoll and ParaScript utilizes the
transactional memory system, so this system can access the same memory
address more effectively than DOHA or River Trail. However, both TigerQuoll
and ParaScript need additional modified JavaScript engine for using the TM
system. To increase portability,]STM implements the STM system only using

HTMLS5 features such as the web worker.

- 30 -

VI. Conclusion

This thesis designed the software transactional memory (STM) system and
the parallelization API to make programmers parallelize applications easier.
Especially, this thesis aims to increase portability, so the system only utilized
features of HTMLS5. This thesis implemented the prototype of STM system and
the parallelization APl as JavaScript libraries, so programmers can parallelize
applications with these libraries in most browsers. However, because of the
communication overhead, the prototype of the system had the large overhead.
In this reason, this system needs the method for reducing communication

overheads additionally as future work.

-31-

g @A Ad bsatie 4d wEe, 9 ojZeldelae
AgFe A Em o gow, ast B A BPge Ee 9
AEYAMY FE Holpn ek aHH, Lzl HisAw
2R A5s 7E Sus 44 sedds] die oEg wE Huz
FEHI) AAA ofe] A WS AT 5 gor], WHhRE T PYE

% shtolr.
WesE Agam ol sle CPU Zoj® FAd 28 4 3o

Zzagel 5 £EE ¥Y F Aok Fhel Yok 13y G

HTMLS oAM= ARtAAHE sds WHstete] 43T ¢ s 9
AA(Web worker)E Alddtar lov, ¢ A= A2 59

dAds ARgsta 7l wiEel fAE B oHRE @S Taske Al
Hl g & A olgke EAR 0] EAlgt

olgfd FAE ddstr] fa ojdel AMPAAHE A WEE

WaEstel AniiagE =EE 9Esd £ RS s gEsg
Azdlge] ANAYG. ~elEhread) W W2 FHE Halt PUs
Z Uz UFHoR ok AHET F YRS THSHE Wyo)

gd, ol TZafurt ZaaAs WHsst

)
R

t) =2 (deadlock) 7}

e A9 AgE

o

Aol 417 Aok 7] W] AHgH] FErhe

-32-

@ o] EA) skt o] A= A3} 2130 EdAAY
w2 2] (transactional memory)E AFE3F HWHH3I 7|HEo] AAHAT

SAE, olEe AMALUE NS A4 WFskE PAol7] wRol &

2

ol AxE 1 HEpgA oMt dgHen e Jhesithe
wAlxdo] AT,

®oEddAE A olElelde] 5 SRS T ltke ol
AU &8syl s A H7 F HIMLS oA Alsdhs 7ssd
8ste] AMAAYECNM ARE Thed mZESe] EdAMY v
A ZEGSTMS T8k, olE AFSd H™st AXEE TSl
EdANE v Axgle oy Jle] WHEolgR ofFoll EdAAS

=

SEERE RIS S EUERE:

s
im
=
2
2ol
=2,
>,
[¥
N
oR
ol
2
Ll
>
>,
o
o
s
g
o
i
=)
td
i)
u):.}l_‘
o
Y

o
>,
N
rlr

o HEgd gkl AR @e MeEA Flse S
Eal

AHES o4 Fx wio] AupEIgE Qzls
WA 2 AHolA ERAME HEEE AT W nsiof & Mo
A 4, 9 AAES AR aFe] HEE F9ES AFEsa Y

el sE=s el EdAde] AN HEeY gese] W

“\“
>
jus)
o
e

FragEd e dre F48 2

i)

AVLEe] Y WEYE Hosts Aol Brlsslry] uie] thE "W e

QHAE(objec &S] RE ZRWE(property) #& HAIE WAe
AHgstel w2 B A S A sl

olgA T EdAME wE] AXRES ARgste], whad ule] 7
olgl gl o] A(teration)E°] HHH o2 Add 4 A= Aol A8 7hed
BEsh 71wl DOALL 71t o524 7IH<& ARste] olgfeeld 1t
AERE AN BF 7 olHYoldE] HPH oz AY e W HE
7Fe@ Spec-DOALL 7IM<& AMEd 4 =5 WHsk APL =
TAseH, FES AXEE ARESte] AR AWAAHE
TRIAMSE BEgete] AxFe Ades SASY. AW, AlsE
AHAle] Fot W] WHstE ZRIagEe o3l A
Ay vk Aes dlem, wEtd AlxElel Ades FEATIY e
R = i L R i A= B R =i F b R
A Feket 1A W EdgAEe] Avlely] fle v ME V1S5S
AEshs 4l Fo7h w8 vEE AAgen, gabA olE Fd F e

st

ko

e FHoR FAGE Aol B

=34 -

Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

"Web Workers," W3C, [Online]. Available: http://www.w3.org/TR/workers/.

D. Bonetta, W. Binder and C. Pautasso, "TigerQuoll: parallel event-based
JavaScript," in Proceedings of the 18th ACM SIGPLAN symposium on
Principles and practice of parallel programming (PPoPP '13), 2013.

M. Mehrara, P.-C. Hsu, M. Samadi and S. Mahlke, "Dynamic
parallelization of JavaScript applications using an ultra-lightweight
speculation mechanism,” in Proceedings of the 2011 IEEE 17th
International Symposium on High Performance Computer Architecture
(HPCA '11), 2011.

"SpiderMonkey," Mozilla Developer Network, [Online]. Available:
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey.

A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B.
Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R.
Reitmaier, M. Bebenita, M. Chang and M. Franz, "Trace-based just-in-time
type specialization for dynamic languages,” in Proceedings of the 2009
ACM SIGPLAN conference on Programming language design and
implementation (PLDI '09), 2009.

L. Rauchwerger and D. Padua, "The LRPD test: Speculative run-time
parallelization of loops with privatization and reduction parallelization,"
Parallel and Distributed Systems, IEEE Transactions on, vol. 10, no. 2, pp.
160-180, 1999.

B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh and B. Hertzberg,
"McRT-STM: a high performance software transactional memory system
for a multi-core runtime,” in Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and practice of parallel programming (PPoPP
'06), 2006.

Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits, J. Cownie, R.
Geva, S. Kozhukow, R. Narayanaswamy, J. Olivier, S. Preis, B. Saha, A.
Tal and X. Tian, "Design and implementation of transactional constructs
for C/C++," in Proceedings of the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications
(OOPSLA'08), 2008.

V. J. Marathe and M. Moir, "Toward High Performance Nonblocking
Software Transactional Memory,"” in Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming

- 35 -

(PPOPP '08), 2008.

[10] D. Dice, O. Shalev and N. Shavit, "Transactional locking I, Distributed
Computing, pp. 194-208, 2006.

[11] L.-N. Pouchet, "PolyBench/C," [Online]. Available: http://web.cse.ohio-
state.edu/~pouchet/software/polybench/.

[12] A. Erbad, N. C. Hutchinson and C. Krasic, "DOHA: scalable real-time web
applications through adaptive concurrent execution,” in Proceedings of
the 21st international conference on World Wide Web (WWW '12), 2012.

[13] S. Herhut, R. L. Hudson, T. Shpeisman and J. Sreeram, "River trail: a path
to parallelism in JavaScript," in Proceedings of the 2013 ACM SIGPLAN
international conference on Object oriented programming systems
languages & applications (OOPSLA '13), 2013.

[14] "OpenCL - The open standard for parallel programming of heterogeneous
systems," Khronos Group, [Online]. Available:
https://www.khronos.org/opencl/.

- 36 -

Acknowledgements

i
o}

7

AN 71l o 7] 74A]

i ©]

ol

& v 7] &=

o}

B

+

o

N
)
!
<
N

o
M

o
N

M
H

R

9 AAW, dow

=3

H =
T

%ol

=eA Y9

3 EEFS HY

A

X

=13
=

°
-

T

=7

[e)
L FAd g

o=t
N

ol

».A

Az
o5

—
-

914}

kel
o] o} 7]

Wl

A

Solu}

e

]

</

A8 =

214 o)

’

obyl

o]

B

R
R

gl

"
o

oy
!
&
B

N

o
ur
<|m

ofp

<

ol

o
r
Ho
I..
Ho

3w A

el

el

o
Tor

AJn
<

B

i

A}

o)

N2

el

W
il

bl

—~
fite)

ek
L

AQe W A7)
.

—_—

k)
B
L

A2z A

HH
-

e v

A

<A

i
4o

0
0
=

XO
!
U
L&
K-
Y
N

o

ol 74 @

Al A

o]

A7F o Ak el

whA vk 2

=gyt

=
=

A

o & Atel

]

= d
=

-37-

sy 2dA]

ol

Akl

SRR

A

-38 -

Curriculum Vitae

Name : Kyoungju Sim

Education

(2009~2012) B.S. in Computer Science and Engineering, Kyungpook National

University

(2013~2014) M.S. in Creative IT Engineering, Pohang University of Science
and Technology

Experience

(2013.10~2014.12) =tAIt Mobile Cloud Infra 7|¥F 7] A+, 4

CEE

-39 -

