Master’s Thesis

Context-Aware Memory Dependence Profiling

Juhyun Kim (32 5 &)
Department of Computer Science and Engineering

Pohang University of Science and Technology
2017

Context-Aware Memory Dependence Profiling

Context-Aware Memory Dependence Profiling

by

Juhyun Kim
Department of Computer Science and Engineering

Pohang University of Science and Technology

A thesis submitted to the faculty of the Pohang University of
Science and Technology in partial fulfillment of the requirements
for the degree of Master of Science in the Department of
Computer Science and Engineering

Pohang, Korea
December 1, 2017
Approved by

Prof. Hanjun Kim

Academic Advisor

Context-Aware Memory Dependence Profiling

Juhyun Kim

The undersigned have examined this thesis and hereby certify
that it is worthy of acceptance for a Master's degree from
POSTECH.

11/21/2017

Committee Chair Hanjun Kim
Member Jangwoo Kim
Member Kyungmin Bae

MCSE 7338 Juhyun Kim,

20152083 Context—Aware Memory Dependence Profiling

r
)

~EZ AAFE Hre ey Tzadd
Department of Computer Science and Engineering, 2017, 64P,
Advisor: Hanjun Kim

Text in English.

ABSTRACT

To support aggressive optimizations, many researchers employ data dependence
profilers which identify dynamic dependence patterns in a program. Although their
analysis motivates more beneficial PDGs (i.e. speculative PDGs), data dependence
profilers that are not sensitive to the program contexts, such as function call sites
and loop nest levels, are likely to produce false results. | propose a context-aware
memory profiler (CAMP) which traces memory dependencies with their full context
information. CAMP is a compiler-runtime cooperative system which takes
advantage of a static analysis to ease the overheads of context management in
profiling, without compromising precision, coverage, or performance of profiling.
Preventing from generating lots of false dependencies, CAMP enables compilers to
build context-aware speculative PDGs that are more precise than what a context-
oblivious profiler makes. | show how a precise context-aware PDG facilitates a
compiler optimization such as speculative parallelism. For 12 programs from SPEC
benchmark suites, the evaluation results show that CAMP successfully removes
significant number of false dependencies which take 70.8% of total dependencies
that a context oblivious profiler makes. In the evaluation, CAMP finds false
dependencies which take 73.3% of all possible memory dependencies at the finest
granularity (i.e. instruction-pairwise and byte-level), while showing only 18.4x

slowdown.

Contents

1 INtrodUCTIONt 1
2. MOTIVALION ... e e 7
2.1. Dependence Information Quality: An Example of a Real Life Program..... 8
2.2. Recording Context Information................coo i 10
2.3. Observations: Predictable Aspects of Contexts...............coooeviiiiiinnn. 16
3. Compiler-assisted Context Management....................oceoeenn.. 18
IR] - LA ol 0o 1 (=3 S I =T P 18
3.2. Context Management and Profiling Code Generation........................... 23
4. Context-Aware Memory Profiling............ccoiiii i, 27
4.1. Overall Algorithm of Context-Aware Memory Profiling........................ 27

4.2. Memory Event with ContexXt............ooiiiiiii i e 30

4.3. Dependence Table.o 33

4.4, History Table.o 34
5. Heterogeneous Sampling inCAMP ..., 36
6. Context-Aware PDGs and Optimization Opportunities............... 40
7. Performance and Sampling ACCUracCy...........cocoeviiiiiiinnnnnann... 44

7.1. Time and Memory Overheads of CAMP.........cooiiiiiiiiiiee 45

7.2, SaAMPIING ACCUIACY ...ttt e e e e e, 48
8. Related WOrK.... ..o, 52

8.1. Context-Aware Memory Profilers............ooi i 52

8.2. Loop-Aware Memory Profilers..........coooiiiiiiii 53

8.3. Context Management in Profilers.............ooii i, 55
0. CoNCIUSION. ..o 56

REFERENCES

List of Figures

2.1

2.2

2.3

24.1

2.4.2

2.4.3

3.1

3.2.1

3.2.2

3.3

Pseudo code of compress blockiNgzip......cocoeenennen 9
A part of Speculative Program Dependence Graph................... 10
Example Program............coooiiiiiii e 14
Context Oblivious (Loop and Call Site Oblivious)............... 15
Loop Aware (Call Site Oblivious)............ccccooeviiiiinn.. 15
Context Aware (Loop and Call Site Aware)....................... 15
Context tree for the example code in Figure 2.3................... 19
Recursive/indirect function call example.......................... 22
Contexttree for Figure 3.2.1.......ccooiiiiiiiiiiiiieeee, 22

Transformed program by the CAMP compiler for the program in
Figure 2.3 .. 24

4.1

4.2

5.1

6.1

6.2

7.1

7.2

Context-aware Dependence Generation Algorithm............. 29

Structure of the CAMP runtime and its operation example on the
program in Figure 3.3 32

Dependences from full profiling and sampled profiling 39

Ratio of false dependencies that CAMP finds from context

oblivious memory profiling results................................ 43
Increment of DOALL parallelizable loops with CAMP

compared to LAMP. ... 43
Profiling time and memory overheads 46

Sensitivity of CAMP with different sampling ratios............. 51

List of Tables

11

5.1

7.1

Comparison of memory profiling systems.......................... 4

Heterogeneous sampling for read and write....................... 38

Benchmark details

List of Equations

7.1 Precision and Sensitivity of Sampling

Chapter 1

Introduction

Dependence information is essential for many compiler-assisted
optimizations. In order to correctly transform programs, a compiler performs
various analyses to collect information of dependence in the program. Control
dependence information tells which portion of the program depends on which
branch, call, or jump instruction. Data dependence information tells sets of
instructions which access or update the same memory address so that a
compiler can preserve correct orders of instructions. As a preparatory analysis
for compiler optimizations, these types of dependence information are
consolidated into a Program Dependence Graph (PDG) which illustrates the

overall program structure and behavior.

Although PDGs are widely used in many optimizations, they often fail to
facilitate aggressive optimizations due to conservative static analyses on
memory dependencies. Since compilers cannot determine the exact
dependencies in programs, a statically constructed PDG gives the most
conservative version of dependence information. Due to aliased pointers,
compilers insert a great number of false dependencies into PDG, especially in

languages that allow explicit use of pointer-based references. Limiting the

-1 -

analyses that depend on PDG, these false dependencies adversely affect
aggressive optimizations such as parallelization, offloading, and

approximation.

To aggressively optimize programs, modern compilers [3, 5, 7, 13, 19, 21,
23, 25] employ memory profilers that trace dynamic memory dependences
among instructions. Once rarely occurring dependences are identified via
profiling, compilers speculatively remove the rarely occurring dependences
from a program dependence graph (PDG) generating a speculative PDG. With
the speculative PDG, the compilers can support aggressive optimization such
as speculative parallelism. For example, even if independence among
iterations cannot be proven statically, the compilers optimistically exploit
loop-level parallelism when there is no inter-iteration dependence during
profiling [13, 14, 15, 16, 20, 26, 28]. Therefore, generating a precise
speculative PDG with high-coverage is crucial to enlarge aggressive

optimization opportunities.

Context-aware representation is essential for PDG to clarify data
dependencies. Even for the same instruction pairs, data dependence patterns
vary widely depending on the program context, such as a function call site
stack and a loop nest level. Without call site contexts, a PDG cannot
distinguish data accesses of the same functions from different call sites. Then,
a compiler will conservatively insert data dependencies into the PDG between
all the call sites, generating lots of false dependencies. Moreover, in nested
loops, there may exist inter-iteration dependencies between two instructions

-2-

in an inner loop, while not in an outer loop. If the PDG cannot distinguish two
different loop contexts, the inter-iteration dependencies will be associated
with both the inner loop and the outer loop. By excluding these false
dependencies, a context-aware PDG gives more precise data dependence

information.

Although many researchers have proposed context-aware memory profilers
that trace dynamic memory dependencies with context information, their tools
suffer from severe overheads in terms of CPU cycles and memory space, and
tracing all memory dependences with their contexts easily become impractical.
In general, profiling memory dependencies greatly increases instruction
counts to identify and record dependencies between instructions that touch the
same memory address. Context awareness exacerbates this problem by
separately treating the same pairs of instructions whose contexts differ. The
profiler of [10], for example, shows over 250 times slowdown (serial version)
because of its significant costs of managing history table whose entries are

associated with loop iterations.

Most existing memory profilers circumvent this problem at the expense of
quality attributes of profiling. Targeting on a few specific optimizations, such
as parallelization, [8, 10, 11, 22, 24] narrow down their scope of context
information into loops, which harms availability of the profiling result to other
optimization clients. Only a few memory profilers [4, 18] log full context
information including function call sites as well as loops, albeit they
compromise their precision by either using compacted context information or

-3-

representing dependencies in context granularity. Table 1.1 summarizes and

compares the existing memory profilers.

System Loop- | Call Site- Covgr‘;'ée of PY\(I)?:]?;% Profiling
Aware Aware Dependences | Coverage Granularity

H. Yu et al. [24] \/ X \/ X Variable
A. Ketterlin et al. [8] \/ X \/ \/ Variable
R. Vanka et al. [22] \/ X X \/ Byte
M. Kim et al. [10] v X v v Byte
T.Chenetal. [4] \/ Cg:l]lpggiﬁd X \/ Byte
Y. Sato et al. [18] \/ \/ X \/ Context
CAMP [This thesis] | v v v v Byte

Table 1.1 Comparison of memory profiling systems

To generate precise context-aware PDGs, this paper proposes a nhew
compiler-runtime cooperative Context-Aware Memory Profiler (CAMP)
which traces memory dependencies in a byte level granularity. While
preserving full context information, we focus on the instrumentation interface
between static and dynamic analysis, so the former helps the latter to greatly
reduce the overheads of managing contexts. The CAMP compiler statically
generates a context tree which represents all the possible contexts in a PDG,

and provides the CAMP runtime with static context offsets as hints to achieve
-4 -

dynamic context IDs for every call site and loop. The CAMP runtime
calculates a dynamic context ID with one arithmetic operation between the
current context 1D and the static offset, and records a memory access history
with the context ID. Using one dynamic context ID from a simple operation
simplifies the data structure and the algorithm of CAMP, and minimizes its

profiling time and memory overheads.

To further reduce profiling time, this paper also proposes a new
heterogeneous sampling method that does not generate any false positive
dependencies. Since memory profilers collect dependences that really
manifest for given profiling inputs, the full-profiling results do not include
any false positive (there is no dependence, but reported as having one) while
the results may include false negative (there is a dependence, but reported as
none) for non-travelled control flows. However, sampling memory
instructions may yield false positive dependences because the profilers may
link memory reads to wrong memory writes due to absence of memory write
history. To avoid generating any false positive, CAMP adopts different

sampling policies for read and write instructions.

For 12 programs from SPEC CINT2000 and CINT2006 benchmark suites,
CAMP finds that 70.8% of context oblivious profiling results are false positive
on geometric average, and increases DOALL parallelism opportunities by
average 9.7% more than loop-aware only memory profilers. Compared to

CAMP without sampling, CAMP with the heterogeneous sampling reduces the

profiling time by 10.8x (from 197.0x to 18.4x and memory overhead by 40%

(from 2.7GB to 1.6GB) on average without any false positive result.
In summary, the primary contributions of this paper are:

® A compiler-runtime cooperative precise context-aware memory

profiling system with full contexts (called CAMP)

® A static context tree that represents all the possible dynamic contexts

such as function call site stacks and loop nests

® A novel heterogeneous sampling method that does not generate any

false positive dependence

® An in-depth evaluation of CAMP using 12 benchmarks from SPEC

CINT2000 and CINT2006 benchmark suites

The rest of this paper is organized as follows. Chapter 2 gives the motivation
of this research and challenging issues in context-aware dependence profiling.
Chapter 3 describes CAMP compiler and the proposed compiler technique.
Chapter 4 explains the CAMP runtime and its algorithm. Chapter 5 explains
the optimization method such as a novel sampling method which does not
generate any false positive dependency. Chapter 6 discusses the meaning and
the potential application of speculative context-aware PDGs, giving a case
study of discovering hidden parallelism. Chapter 7 shows the evaluation
results, and Chapter 8 contains related work. Finally, Chapter 9 concludes the

thesis.

Chapter 2

Motivation

Context-aware dependence profiling is an essential step in building context-
aware PDG. Although a profiler gives information about only specific program
executions, it realizes empirically predictable PDG, often called speculative
PDG. Supporting precise and fine-grained representations, Context-awareness
plays an important role not only in speculative PDGs, but also in dependence

profiling.

This section first motivates context-aware memory profiling and false
positive-free sampling. Section 2.1 shows an example of real life program and
a part of PDG of it, giving an idea of how context information affects data
dependencies between different call sites and loops. It also shows how the
context-awareness increases the precision of a speculative PDG by comparing
with a speculative PDG with context-oblivious memory profiling results.
Section 2.2 illustrates why speculative PDGs of the same function can vary
depending on contexts and how context-awareness increases optimization

opportunities such as uncovering hidden parallelism.

2.1. Dependence Information Quality: An Example

of a Real Life Program

Compared with a naive context-oblivious profiler, a context-aware profiler
provides concise data dependence information in terms of both quantity and
quality. As an example of a real-life program, Figure 2.2 illustrates parts of
memory dependencies that context-aware and context-oblivious memory
profilers collect for a global variable outcnt in gzip (Figure 2.1). True
dependencies, observed by a context-aware memory profiler, are drawn in blue
lines, whereas false dependencies which occur only from context-oblivious
memory profiling are drawn in red lines. Notice that every pair of

send bits function calls is correlated by both dependencies.

Compilers will conclude that any send bits invocation is unable to
reordered or parallelized due to false dependencies. These false dependencies
originate from compiler's conservative assumptions on a single context-
oblivious dependency, i.e. the compiler inserts dependencies on ocutcnt++
for all the possible combinations of send bits function calls. Given
context-aware dependencies, the compiler can distinguish call sites of memory
accesses, and prevent from generating false dependencies. Only for the
variable outcnt in the whole program, the context-oblivious memory profiler
claims 1,344,238 false dependencies, while there exist only 499 true memory

dependencies. In addition, context-aware profiler elaborates the dependencies

by classifying it into intra-iteration (solid line) and inter-iteration (dotted line)

with respect to a corresponding loop.

void send bits(value, length) ({
if (bi _valid> (int)size -length) {
bi buf|= (value << bi wvalid);
outbuf [outcnt++] = bi buf;
bi buf= (ush)value >> (size -bi valid);
bi valid+= length -size;
} else {
bi buf|= value << bi valid;
bi valid+= length;
}
}

void compress block(ltree, dtree) ({
while (1x < last 1lit} {
flag = flag update();
lc= 1 buf[lx++];
if (flag == 0) {
send bits(lc, ltree); // 1
} else {
code = length codel[lc];
send bits(code, ltree); // 2
extra = get extra(code);
if (extra != 0) {
lc= get lc(code);
send bits(lc, extra); // 3
}
code = d code(dist);
send bits(code, dtree); // 4
extra = get extra(code);
if (extra != 0) {
dist= get dist (code);
send bits(dist, extra); // 5
}
}
}
send bits (END BLOCK, ltree); // 6
}

Figure 2.1 Pseudo code of compress blockingzip

compress_block

/

6: send_bits) while

1: send bits | : | 2: send bits 5: send_bits ' 4: send bits ' 3: send bits

Figure 2.2 A part of Speculative Program Dependence Graph of Figure 2.1

2.2. Recording Context Information

A precise speculative PDG with memory profiling results about dynamic
dependences enables modern compilers [3, 5, 7, 13, 19, 21, 23, 25] to support
aggressive optimization that cannot be achieved by static analyses only. For
example, automatic speculative parallelizing compilers [9, 13, 14, 15, 16, 20,
26, 28] collect dynamic dependences in loops, and speculatively parallelize
the loops ignoring rarely occurring dependences that static analysis cannot
remove. Moreover, speculative PDGs help parallelizing compilers produce

robust codes by augmenting fragile static analyses [9].

To draw context-aware dependencies, a profiler should incorporate context
information into records of all memory access events. The dynamic

dependences vary depending on their contexts such as loop nest levels and
- 10 -

function call stacks. Figure2.3 is a simple program which calculates moving
weighted averages for matrices, and Figure 2.4 shows how context information
refines and distinguishes a data dependency between a pair of instructions.
Assuming that tmp1l in function wgtAvgVv is held in a register (which is
highly likely), a Read-After-Write (RAW) memory dependency from LD4 to
sT6 occurs only when v1 and v3 are aliased!. For example, ST6 updates
A[t][i] that LD4 reads at the next iteration of Loop L2 in Function call site
F3 (Notice that wgtMovingaAvg (A,A) makes v1 and v2 aliased).
Otherwise, the RAW dependency does not exist. As shown in Figure 2.4.3, the
most verbose context information, which considers both loops and call sites,
provides the finest resolution on dependencies. In this regard, the context
information on memory access histories plays a key role in indicating an exact

position of dependencies in speculative context-aware PDG.

A context-oblivious memory profiler that does not track calling context or
loop nest severely limits the applicability of speculative parallelization. For
example, such a profiler may report that there is a memory dependence from
ST6 to L.D4 with no available context information. As Figure 2.4.1 illustrates,
since LD4 and ST6 form a cyclic dependence graph with the profiled memory

dependence on A[t] [1] and a statically found data dependence on tmp1,

1 Since register dependencies manifest themselves at compile time, we
exclude them from the scope of this paper.

-11 -

automatic speculative parallelizing compilers are unable to parallelize both

Loop L1 and Loop L2.

Like most existing memory profilers [8, 19, 11, 22, 24], if a memory profiler
is aware of loop nest levels, applicability of the speculative parallelization can
be increased. As Figure 2.4.2 shows, the loop-aware memory profiler reports
that there is an inter-iteration memory dependence from ST6 to L.D4 for Loop
L2 but not for Loop L1 because LD4 reads A[t-1] [i] that ST6 updates
at the previous invocation of Loop L1. Since there is no cyclic dependence
in a dependence graph for Loop L1, the parallelizing compilers can
parallelize Loop L1 while the compilers still cannot parallelize Loop L2.
Therefore, not to lose this parallelism opportunity on Loop L1, the memory

profiler should record dependences with loop nest levels.

For more aggressive optimization, context information like function call site
stacks is necessary. Instruction 22 and Instruction 24 call the same
function wgtMovingAvg with different arguments such as (2, B) and (2, 2),
S0 wgtMovingAvg has different dependence graphs for each call site. As
Figure 2.4.3 shows, a context-aware memory profiler records memory
dependences for each context including call stacks, and allows compilers to
generate different dependence graphs for loop nest levels and call stacks. As
a result, the compilers can parallelize the outer loop 1.2 for call site F2 that
cannot be parallelized with loop-aware memory profiling only. Moreover,

context-awareness of memory profiling allows compilers to recognize memory

-12 -

operations through getter and setter functions from different call sites as
different memory operations, and to more aggressively optimize programs

with mutator functions.

Augmenting context information, however, incurs significant overheads.
Attaching heavy data such as function call stacks, loop nesting information,
and iteration counters to each memory access history is the simplest but almost
infeasible approach. The profiler of [10], instead, utilizes pending and history
tables to trace context changes (loop iteration) of memory accesses within
nested loops. Still, since these tables are managed per loop nest, they cause
significant memory overheads when the loop nests are deep. In [8], the
execution tree tracks and maintains context changes at profiling time. Besides
managing the tree, their profiler needs to compute the latest common execution
point of two memory accesses of a dependency, which also costs significant
computational overheads. Consequently, most context-aware profilers suffer
from serious computational and memory overheads, resulting in unacceptable

profiling times.

- 13 -

O J o U b W DN

DO NDNNDNDNDNNR R BBB B BB B Q
o0 WNERE O WU WN RO

void wgtAvgV (float *vl1l, float *v2, float *v3)

// Loop L1

for(int 1 = 0; 1 < N ; 1++){
float tmpl = v1[i]; // LDA4
float tmp2 = v2[i];

v3[i] = w * tmpl + (1-w) * tmp2; // ST6

void wgtMovingAvg (float **in, float **out) {
// Loop L2
for(int t = 1; t < N ; t++){
// Function Call Site F1
wgtAvgV (in[t-1], in[t], out[t]):

void main () {
float A[N][N], BI[N][N];
float v[N], w[N];
// Function Call Site F2
wgtMovingAvg (A, B);
// Function Call Site F3
wgtMovingAvg (A, A);
// Function Call Site F4
wgtAvgV (v, w, V)

{

Figure 2.3 Example Program

-14 -

t LD4

ST6 |

Figure 2.4.1 Context Oblivious (Loop and Call Site Oblivious)

Loop L2: Loop L1:
LD4 | L2 <+ LD4 | L2/L1
I
I
ST6 | L2 - - ST6 | L2/L1

——) Intra-iteration Dependence
----- P Inter-iteration Dependence

Figure 2.4.2 Loop Aware (Call Site Oblivious)

Loop L2 for Call Site F2: Loop L1 for Call Site F2:
LD4 |F2/L2 LD4|F2/L2/F1/L1
ST6|F2/L2 ST6|F2/L2/F1/L1

Loop L2 for Call Site F3: Loop L1 for Call Site F3:
LD4 |F3/L2 < LD4 |F3/L2/F1/L1

ST6 |F3/L2 - ST6|F3/L2/F1/L1

Figure 2.4.3 Context Aware (Loop and Call Site Aware)

- 15 -

2.3. Observations: Predictable Aspects of Contexts

To address the aforementioned problems, compilers can help profilers to
reduce the cost of dealing context in several ways. A compiler could remove
the need for managing context information by in-lining all function calls and
unrolling loops, unifying all contexts into one; this radical approach seems
plausible, but the size of program code will explode if the program has deep
loop nests or function invocations. As another way to alleviate context
management costs, compilers can provide concise representations for profilers
to efficiently handle contexts at profiling time; since a compiler statically
analyzes a target program before inserting instrumentation functions, it can
give hints on how a profiler efficiently represents and computes contexts by

leveraging its prior knowledges of the program.

Based on compiler assistance, we make several observations regarding
predictable aspects of contexts. First, given full access to the source code, we
can statically enumerate every possible context of a program by analyzing
control flow in context granularity. In other words, we can statically construct
a context tree such as Calling Context Tree (CCT) [2, 6, 27] and Loop Call
Context Tree (LCCT) [17, 18], and assign each node a unique context ID.
Second, by using a simple identification methodology on context ID, profilers
can efficiently track these IDs even without carrying the context tree. Third,
as [10] also pointed out, dependencies between iterations often exhibit stride

patterns in both a loop and loop nests. To avoid wasteful duplications of

-16 -

context information regarding loops, profilers only need to tell whether a
dependency is inter-iteration or intra-iteration, which is sufficient for both

context-aware PDGs and various code optimization clients.

-17 -

Chapter 3

Compiler-assisted Context Management

Though Chapter 2 points out the necessity of context-aware memory profiling,
profiling memory dependences with full contexts suffers from huge profiling
time overheads. To overcome the high profiling overheads, the CAMP
compiler statically analyzes a program before profiling and simplifies context

management of the CAMP runtime.

3.1. Static Context Tree

To efficiently manage the context changes, we proposes a new static context
tree that represents all the possible contexts during the program execution.
Unlike the existing context trees such as Loop Call Context Tree (LCCT) [17,
18] and Calling Context Tree (CCT) [2, 6, 27] that profilers dynamically
generate at profiling time, the CAMP compiler statically generates the context

tree to alleviate context management overheads at profiling time.

The CAMP compiler creates the context tree in two steps; context tree
generation and context ID assignment. At the context tree generation step, the
compiler creates a context tree by inserting a child node for every function call

site and loop invocation. Figure 3.1 shows a context tree for the example code

-18 -

in Figure 2.3. The compiler inserts three different children into the main node
for call sites F2, ¥3 and F4. Here, though call sites 72 and r3 call the same
function wgtMovingAvg, the compiler inserts different context nodes for
each call site, thus generating different context nodes for the same call site F1
and loop invocations L1 and L2 in wgtMovingAvg. As a result, the

context tree can differentiate memory instructions across all the dynamic

contexts.
) CtxID: 0
main
Offset: +0
CtxID: 1 CtxID: 5 CtxID: 9
F2
Offset: +1 F3 Offset: +5 F4 Offset: +9
| . | . |
L2 CtxID: 2 L2 CtxID: 6 L1 CtxID: 10
Offset: +1 Offset: +1 Offset: +1
| o |
F1 CtxID: 3 F1 CtxID: 7
Offset: +1 Offset: +1
| - |
L1 CtxID: 4 L1 |CtxID: 8
Offset: +1 Offset: +1

Figure 3.1 Context tree for the example code in Figure 2.3

-19 -

At the context ID assignment step, the CAMP compiler assigns a unique
context ID to each context node. Since there can exist multiple context nodes
for the same call site and loop invocation such as 1, L1 and L2 depending
on the dynamically determined context stack, the compiler needs to assign
different context IDs at the same static call site and loop invocation codes.
Addressing the problem, the compiler assigns context IDs as a unique path
sum where each call site and loop invocation has the same static offset, and
calculates the context IDs and their static offset with pre-order tree traversal.
Figure 3.1 shows context IDs and their static offsets for the context tree.
Though L1 is invoked in multiple contexts with different IDs such as 4, 8 and
10, its static offset from its parent contexts is one value, +1. The CAMP
profiler dynamically calculates the context IDs by adding the static offset to

the current context ID.

While the CAMP compiler creates a context tree for most cases, there are two
special cases that require special manipulation; recursive function call and
indirect function call. In contrast to dynamically created context trees, static
context trees are ignorant of recursion depth and the target function that a
function pointer points to. So, the CAMP compiler marks recursive functions
(including mutually recursive functions) before generating the context tree,
and inserts only the first recursive function call site as a leaf loop context node,
preventing from generating a context tree infinitely. Here, the compiler
considers the recursive function call site node as a loop node, so the CAMP

profiler can find its recursion depth by counting iteration numbers. For indirect

-20 -

function calls, the compiler analyzes all the possible target candidates and
inserts the candidates as children nodes.? Figure 3.2.1 shows an example code
with recursive function calls and indirect function calls. Figure 3.2.2
illustrates that the compiler adds call site F3 as a leaf node due to recursive
function calls between is even and is odd, and inserts all the possible

indirect call candidates such as inc and dec for call site F4.

2 Given full access to the source code, the CAMP compiler determines the

candidates by matching type signatures of all functions.

-21 -

bool is even (unsigned int n) { int inc(int n)

if (n==0) return true; return n+1l;
else return is odd(n-1); // Call Site F1 }
} int dec (int n)
bool is odd(unsigned int n) { return n-1;
if (n==0) return false;

else return is _even(n-1); // Call Site F2

void main () {
int (*fPtr) (int);
if(is_even(n)) // Call Site F3
fPtr = &inc;
else
fPtr = &dec;
fPtr (n); // Call Site F4

}

Figure 3.2.1 Recursive/indirect function call example

CtxID: O
main
Offset: +0
3 CtxID: 1 F4 CtxID: 2 F4 CtxID: 3
R F)
- Offset: +1 inc Offset: +2 dec | Offset: +3

Figure 3.2.2 Context tree for Figure 3.2.1

-22 -

3.2. Context Management and Profiling Code

Generation

To track context changes, CAMP instruments not only memory accesses but
also function calls and loops. During the program execution, contexts such as
function call site stacks and loop nests are continuously changing. To reduce
context management overheads, the CAMP compiler statically finds the
context changing points such as entries and exits of the functions, loop
invocations and loop iterations, and inserts instructions to notify the CAMP
runtime of the context changes. Followings are the context changing notifiers,
and Figure 3.3 shows how the CAMP compiler inserts the notifiers to the

example in Figure 2.3.

1 void wgtAvgV (float *vl, float *v2, float *v3)
2 begin_loop(+1) ;

3 for(int 1 = 0; 1 < N ; 1i++){

4 profiling load(&vl[i]) ;

5 float tmpl = v1[i];

6 profiling load(&v2[i]) ;

7 float tmp2 = v2[i];

8 profiling store(&v3[i]);

9 v3[i] = w * tmpl + (l-w) * tmp2;
10 next_ iteration();

11 }

12 end loop(-1);

13|}

14

{

- 23 -

15| void wgtMovingAvg(float **in, float **out) {
16 begin_loop(+1) ;
17 for(int t = 1; t < N ; t++){

18 profiling load(&in[t-1]);
19 profiling load(&in[t]);
20 profiling load(&out[t]);
21 begin_ function (+1) ;

22 wgtAvgV (in[t-1], in[t], outl[t]):
23 end function(-1);

24 next iteration();

25 }

26 end_loop(-1);

27 |}

28

29 | void main () {

30 float A[N][N], B[N]I[N];
31 float v[N], w[N];
32 begin_function (+1);
33 wgtMovingAvg (A, B);
34 end_function(-1);
35 begin_function (+5) ;
36 wgtMovingAvg (A, A);
37 end function(-5);
38 begin_ function (+9);
39 wgtAvgV (v, w, V);
40 end function(-9);
41 | }

Figure 3.3 Transformed program by the CAMP compiler for the program
in Figure 2.3. Bold lines are added by the CAMP compiler.

® begin_function/begin_loop(offset) notifies the beginning of a new

context to the CAMP profiler with offset. The profiler calculates the new

- 24 -

context ID by adding the offset to the current context ID. If a loop context
begins, the profiler pushes an iteration counter to the iteration counter

stack that has iteration counts of loop nests.

end_function/begin_loop(offset) notifies the end of the current context
to the profiler with offset. The profiler restores the previous context ID by
adding the offset to the current context ID. If a loop context ends, the

profiler pops the iteration counter from the iteration counter stack.

next_iteration() notifies the iteration change to the CAMP profiler.
Since only the loop context at top of the stack (i.e., the inner most loop)
can iterate, there is no argument in this mark. The profiler increases the

iteration counter at the top.

With the context changing notifiers, the CAMP runtime efficiently reflects

context changes and updates context IDs during the program execution.

Since the most recently called function returns first, and the most recently

entered loop (inner-most loop) exits first, programs change their contexts

following the LIFO rule. As a result CAMP manages the dynamic context 1D

by adding or subtracting the context offset into and from the current context

ID according to the context changes. For example, when a program enters

(exits) a function and a loop nest, the context manager adds (subtract) the

- 25 -

context offset into (from) the current context ID. To manage dependencies in
the iterated contexts, CAMP has a global iteration counter stack which keeps
how many times each context in the context stack iterates. For every loop
iteration, CAMP changes the iteration information in the corresponding

iteration counter.

-26 -

[Chapter 4 J

Context-Aware Memory Profiling

The CAMP runtime mainly consists of three components: current context,
dependence table and history table. This chapter describes the overall
algorithm of context-aware memory profiling and each component of the

runtime in details.

4.1. Overall Algorithm of Context-Aware Memory
Profiling

CAMP runtime incorporates a context into every single dependency. A
dynamic instruction instance has its context that represents function call site
stacks and iteration information of nested loops when the instruction is
executed. When CAMP generates a dependency, it needs to merge the
instruction context into a dependence context that represents the context where
the dependency is valid. For example, an inter-iteration RAW dependency in
Figure 2.4.3 is valid at Loop L2 invoked by F3, but is not valid at Loop 1.2

invoked by F2 nor Loop L3. Therefore, when adding the inter-iteration

-27 -

dependency, CAMP should record its valid context such as Loop L2 invoked

by F3.

Figure 4.1 describes how the CAMP runtime generates dependencies with
valid contexts. When an instruction accesses a memory location, the runtime
receives the memory address and instruction ID, and has the current context
ID and iteration counts of nested loops. First, the CAMP runtime searches
previous memory instructions that access the same memory address from its
history table (Line 1), and generates unique dependence IDs from the
instruction IDs and context IDs of the current instruction and all the previous
instructions (Line 2).Since the dependence ID reflects instructions and their
contexts, CAMP can differentiate dependencies with contexts. Moreover, the
dependence ID enables us to infer its dependence type such as RAR, RAW,
WAR and WAW because the instruction IDs involve their instruction types
such as load and store. Then, the CAMP runtime calculates iterative relation
of the dependency by comparing each iteration count in the iteration stacks
(Line 4-10). Since the iterative relation is valid only in the same loop
invocation, the runtime stops the comparison if the iteration counts of the two
instructions are different. To avoid inserting redundant dependencies, the
runtime inspects the existence of the same dependencies in the dependence
table (Line 11-20). If there exists the same dependencies with the same
context, the runtime merges the iterative relations of the current and the
existing dependencies. For example, if one dependency has inter-iteration

relation and the other one has intra-iteration relation, the CAMP runtime marks

- 28 -

O© 00 NOoO Ol & WD B

NNNNRP R RPRRRRERRRRR
NP, O®OWOow=NoohwiNhERERo

23
24
25
26
27
28

Data: addr: accessed address

Data: dstID: accessed instruction 1D

Data: dstCtx: current context ID

Data: dstlterStack: current iteration stack

/* Generate Dependences

foreach (srcID, srcCtx, srclterStack) € getHistory(addr) do
let deplD = genDependencelD(srclID, srcCtx, dstID, dstCtx);
let deptiter = NULL,;

if srclterStack[level] == dstlterStack[level] then
| deplter[level] = INTRA;
else
deplter[level] = INTER;
break;
end
end

let dep = genDependence(deplD);

if dep == NULL then
insertDependence(deplD, deplter);

else

let oldDeplter = getDependencelter(dep);

\ deplter[level] = oldDeplter[level] | deplter[level] ;
end
updateDependence(deplD, deplter);

end

end

/* Update History Tables

if dstID == STORE then
replaceHistoryElement(addr, dstID, dstCtx, dstlterStack);
clearLoadHistory(addr);

else

‘ addHistoryElement(addr, dstID, dstCtx, dstlterStack);
end

*/

foreach level = 0 to minStackLevel(srclterStack, dstlterStack) do

foreach level = 0 to maxStackLevel(oldDeplter, deplter) do

*/

Figure 4.1 Context-aware Dependence Generation Algorithm

- 29 -

the dependency as mixed.

After generating the dependency, the CAMP runtime updates the history table
with the new instruction. (Line 22-28). If the current instruction is a load, the
runtime simply adds the current instruction and its context in the load history
table. Whereas, if the current instruction is a store, the runtime does not only
replace the element in the store history table with the current instruction and
its context, but also clears elements in the load history table because a WAR
dependency is the relation between the current store and all the previous loads

after the last store instruction.

4.2. Memory Event with Context

In addition to context changing notifiers, the CAMP compiler finds all the
memory related instructions such as loads, stores, memory allocation, memory
deallocation, and memory sets, and inserts the instructions to notify the CAMP
runtime of execution of the memory related instructions. To efficiently manage
the dependence table, the compiler statically and sequentially assigns numbers
to all the load and store instructions. Since the compiler knows the total
number of load and store instructions, the runtime can allocate an array for the

dependence table and use the ID as an index.

Figure 4.2(1) shows how the CAMP runtime creates memory instruction

context from the memory event and the current context using the example code

- 30 -

in Figure 3.3 and the context tree in Figure 3.1. When Instruction 4
accessesA[1]1[0] atL1 called by F1, .2 and F3, a memory event is notified
with a memory instruction (LD4) and its memory address (A[1][0]). The
runtime merges the instruction with context ID (Ctx8) and iteration counters
(2/1), and generates a memory instruction context as 4:Ctx8 (2/1). The

generated instruction context will be used in the history table and dependence

generation.

-31-

Memory Event Current Context -

(ATI[0] — J Context Stack | Ctx8
| Iter. Counter | 2 (L2) / 1(L1)

Address Instr.ID

History Table

Context
Address Load Store
4 |Ctx8:2/1
A[][0] ‘ 4 ‘Ctx8:2f1 H 6 |Ctxs:m ‘
il (3) Update History Table IE
S T J
DST 1D Dependences
» 4 | RAW (6Ctx8—4:Ctx8) | X/ |
(2) Construct
Dependence | | WAR (5:Ctx8—6:Ctx8) | VI |
6
| WAR (5:Ctx4—6:Ctx8) | 11|

Dependence Table

Figure 4.2 Structure of the CAMP runtime and its operation example on the
program in Figure 3.3.3

3 In the context, the number in left-most position means instruction ID, and the numbers after

the context ID (Ctx8) are iteration counts of nested loops. In the dependence table element,
the right half indicates loop iteration relation (I and X mean 'INTRA' and 'INTER/
respectively). Updated elements by the operations in the figure are shaded in grey.

-32-

4.3. Dependence Table

While executing programs, the CAMP runtime directly generates RAW,
WAR and WAW dependencies and records the dependencies in the
dependence table. Since the CAMP compiler lets the CAMP runtime know the
total number of load and store instructions, the runtime allocates the
dependence table as an array indexed by destination ID. Since different
dependencies can share the same destination instruction, multiple
dependencies can be stored in each element in the dependence table, so the

runtime uses linked lists for each destination.

Figure 4.2(2) shows how the CAMP runtime generates a RAW dependency
and stores the dependency in the dependence table from the example code in
Figure 3.3. Given the instruction context (4:Ctx8(2/1)) and memory
address (A[1][0]), the runtime looks up the history table for the same
address, and finds a store context (6:Ctx8 (1/1)). With the two instruction
contexts, the runtime generates a context-aware dependency according to
algorithm in Figure 4.1. Since the iteration counts are different at 12, the
iterative relation is valid up to 1.2, and L2 is marked as an inter-iteration
dependence. Here, the CAMP runtime can safely ignore 1 and 1.1 contexts
because the dependency exists only across different invocations for 1 and .1

and does not affect instruction reordering in wgtAvgV and Loop L1.

- 33 -

4.4. History Table

The CAMP runtime has load and store history tables that keep previously
accessed load and store instructions for each memory location. Whenever a
memory instruction accesses a memory location, the runtime looks up the
access history from the history tables, generates dependencies between the
current instruction and all the previous instructions in the history tables, and

updates the history tables with the current instruction.

Figure 4.2(3) shows how the CAMP runtime updates the history table on the
memory event. After updating the dependence table, the runtime updates the
history table with the new memory event. If the current memory event is a load
like 4:Ctx8(2/1), the runtime simply adds the instruction context in the
load history table. Thus, there can exist more than one load instruction context
for the same memory address in the load history table. However, if the current
memory event is a store, the runtime replaces the element in the store history
table to the instruction context, so there exists at most one instruction context
for each memory address in the store history table. Moreover, a store memory
event clears elements in the load history table. This clearance allows the
runtime not to generate false WAR dependences between the current store

instruction and a load instruction before the previous store instruction.

The history tables are implemented in shadow memory. It is logically
orthogonal to original application address space. By mirroring the application

address space, it enables the runtime to efficiently record and retrieve memory

=34 -

access histories. When a memory address is accessed, the runtime calculates
the corresponding shadow address simply with a few bit operations. A history
data like 4:Ctx8 (2/1) can be found at these shadow addresses. In an on-
demand fashion, the shadow memory is reactively allocated and freed at a page
granularity, sparing lots of memory space. This idea of shadow memory is

similar to the ones in [4, 8].

-35-

Chapter 5

Heterogeneous Sampling in CAMP

Memory profilers are very sensitive to false positives that affect compiler
optimization. Since memory profilers collect dependences only for given
profiling inputs, profiling results always involve false negative for non-
travelled control flows. Thus, when compilers aggressively optimize programs
with the profiling results, the compilers assume that false negative
dependences can manifest at run-time. However, since the memory profilers
collect dependences that really manifest, profiling does not generate any false
positive dependence ideally, and compilers do not assume a false positive
dependence in their optimization. Therefore, profiling optimization that can
introduce false positive results may significantly affect compiler analysis and

optimization.

To further optimize our profiling method, we propose a heterogeneous
sampling method which employs two different sampling patterns together;
random sampling and consecutive sampling. Since major overheads of
profiling are associated with loops, we apply these two sampling methods only
inside loops. Random sampling is to randomly choose loop iterations where

all memory instructions are instrumented. Whenever CAMP encounters a new

- 36 -

iteration (i.e. next iteration()), it randomly decides whether the
iteration should be inspected, according to the predetermined random sampling
ratio. Consecutive sampling, whereas, takes into account first several
iterations of a loop to be instrumented. Dependence patterns in loops are
usually straightforward (they often occurs consecutively, or in stride patterns.),
so they are detectable in first several iterations. By taking advantage of this
property, consecutive sampling catches most of regular dependencies in loops
at an early stage, easing the burdens of random sampling later. To avoid
exhaustive loop profiling, we apply these two different sampling method
together in choosing which iterations to be inspected, yet finding most of

dependencies in loops.

To avoid generating false positive dependencies, CAMP applies different
sampling policies to memory reads and writes. Figure 5.1 shows how a careless
sampling policy introduces false positive dependencies. Notice that only
sampling memory write instructions introduces false positive because the
absence of up-to-date memory write history can make a memory profiler
generate a dependency with a wrong memory write instruction. For example,
the absence of ST2 leaves the memory write history on Address A not
updated. Thus, the profiler generates dependencies with ST1 instead of ST2
for following memory instructions, and newly introduces false positive such
as WAW (ST1->ST3) and RAW (ST1->LD2) that are red lines in Figure
5.1(c). To prevent this situation, CAMP updates history tables for all the

memory writes. In other words, for non-sampled memory reads, it skips all the

- 37 -

three steps of the routine in Figure 4.2. Whereas, for non-sampled memory

writes, it skips only the dependence table update step. Since the number of

memory writes is smaller than the number of reads, and updating the history

tables is cheaper than updating dependence tables, CAMP prevents any false

positive dependency without sacrificing much of the performance. Table 5.1

summarizes CAMP sampling policies.

Sampled Not Sampled
Operations
Read Write Read Write
Context Creation \/ \/ X \/
History Table Update v v X v
Dependence Table Update v v X X

Table 5.1 Heterogeneous sampling for read and write

- 38 -

sStore A;
load A;
store A;
load A;

store A;

(a) Sequence of memory instructions

WAW LDI

ST3 |€—

//ST1,
//LD1,

//ST2,
//LD2,

//ST3, sampled

WAW

(b) Full profiling result

sampled

WAW

sampled

L

not sampled

not sampled

ST1

LD2 |4

+WAR

ST3

RAW

(c) Sampled profiling result

Figure 5.1 Dependences from full profiling and sampled profiling.*

4 Grey means false negative, and red means false positive

-39 -

Chapter 6

Context-Aware PDGs and

Optimization Opportunities

By excluding a large number of false dependencies, CAMP helps a compiler
to generate much more concise context-aware PDGs than a context-obvious
profiler. Since a program often manipulates memory values through accessor
functions such as getter and setter functions across all the program points,
context-oblivious profiling forces compilers to conservatively insert
dependencies into a context-aware PDG for all the combinations between
getters and setters, spawning lots of false dependencies. Preventing such faults,
CAMP allows compilers to distinguish memory accesses at different call sites.
Figure 6.1 shows the ratios of false dependencies that CAMP finds from
context oblivious memory profiling results. Here, the false dependencies are
exactly the same concept of the red edges in Figure 2.2. We find that 70.8%

of context oblivious memory profiling results for 12 programs are false.

In order to show their potential of context-aware speculative PDGs, this work

performs a case study for an aggressive optimization, namely speculative

- 40 -

parallelism. Even if independence among iterations cannot be proven
statically, this technique optimistically exploits loop-level parallelism when
no inter-iteration dependency is exposed during profiling. It serves as a
foundational technology for many automatic parallelizing compilers. More
details are in [9, 13, 14, 15, 16, 20, 26, 28]. To see how much CAMP increases
parallelism opportunities, we compare two numbers of parallelizable loops in
the programs; one is estimated by CAMP and the other is estimated by a loop-
aware only memory profiler (LAMP). A loop is considered as a parallelizable
loop if the loop does not have any inter-iteration control, register and memory
dependency except on induction variables. For simplicity, we only consider
DOALL parallelism in this case study. Here, the LAMP profiler is equivalent

to a CAMP profiler without function call-site awareness.

Figure 6.2 shows the increment of parallelizable loops by CAMP against
LAMP. Compared with LAMP, CAMP increases parallelizable loops by 9.7%
on average and by up to 54.2% (401.bzip2). As CAMP provides more
concise dependence information, our compiler finds additional loops that is
free of inter-iteration dependencies in most cases. These additional loops were
considered to be not parallelizable by LAMP because, for example, functions
that touches memory variables are invoked inside their loop body, or a single
instance of them actually has an inter-iteration dependency in a certain context.
Thanks to context-aware PDG, our compiler corrects these misjudgments by
accepting more diversified contexts of a loop. CAMP, however, fails to

increase parallelism opportunities for 177 .mesa and 462.1libguantum

- 41 -

because the programs have regular memory access patterns for LAMP enough
to find parallelizable loops. CAMP also fails to increase parallelism for
188.ammp and 429 .mcf because CAMP creates context trees with a small

number of context nodes due to recursive calls.

- 42 -

Ratio of false dependencies

Increment of DOALL—able loops

100% —
00%]]]
80% |- —
60% |—. . _
50% |—. ..]
40% [.
30% | _
20% |- _
10% | _ ’—‘ _
0%
’ _ = = E Z N = = E = o
T & & = 3 S5 Z & g £ : § 3
- = £ = § v Y g £ 2
=
=T
Figure 6.1 Ratio of false dependencies that CAMP finds from context
oblivious memory profiling results
60%
50% | _
40% - -
30% | -
20% ... |
10% ... e . Y N —
0%

179.art :l

188.ammp |—

175.vpr }

177.mesa |—

470.1bm j
average

164.gzip
429.mef |—
433.milc

300, twolf

401.bzip2
462 libquantum —

Figure 6.2 Increment of DOALL parallelizable loops
with CAMP compared to LAMP

- 43 -

Chapter V4

Performance and Sampling Accuracy

We implemented the CAMP compiler and runtime on top of the LLVM
compiler infrastructure [12] (revision 242,220). It is evaluated with 12
general-purposed programs in the SPEC CINT2000 and CINT2006 benchmark
suites [1]. All the evaluations were done natively on an Intel® Core™ i7-4770
machine that has 4 cores running at 3.40GHz and 16 GB of RAM. The

programs were compiled with the -O3 optimization flag.

Table 7.1 lists the evaluated programs along with information such as brief
description and statistics on static and dynamic profiled contexts and memory
instructions. Details about each program can be found in [1]. The numbers
of loops and call sites in the programs range from 153 (429 .mcf) to 6,292
(464.n264ref), and the numbers of executed memory instructions also

range from 101 million (164 .gzip) to 13 billion (179.art).

- 44 -

of Static Instances # of Dynamic Instances
Benchmark JFunctions| Loops Qall Loads | Stores | Calls Loop Loads | Stores
Sites Invo.

164.gzip 70 200 462 1191 | 1134 5M M 69M 32M
175.vpr 155 482 2299 | 4250 | 1336 | 113M | 50M |2118M | 573M
177.mesa 1019 1340 | 4827 | 16594 | 11744 | 3913M | 8M | 5356M | 3751M
179.art 26 132 274 674 282 71IM | 255M [9810M | 3359M
188.ammp 179 461 1453 | 4031 | 1336 | 183M | 95M | 6618M | 1680M
300.twolf 190 1082 | 2294 | 10585 | 3773 12M 20M | 407M | 125M
401.bzip2 69 301 487 2514 1662 41M 101M | 1116M | 267M
429.mcf 24 58 95 372 292 3M 81M | 1198M | 138M
433.milc 235 329 2680 | 3498 | 1064 47M 7M | 1505M | 439M
456.hmmer 467 1124 | 5168 | 9739 | 4594 64M 47M [3316M | 1853M
462.libquantum] 95 119 568 646 345 182M | 77M | 5366M | 2089M

Table 7.1 Benchmark details.?

7.1. Time and Memory Overheads of CAMP

Figure 7.1 shows the whole program profiling time and memory overheads

of CAMP. Bases are the execution time and memory usage of the original

program without profiling. This paper evaluates a context-oblivious profiler,

CAMP without sampling and CAMP with various sampling conditions to

analyze the overheads of context-awareness and the effectiveness of the

proposed heterogeneous sampling. Here, the context-oblivious profiler is

equivalent to CAMP profiler without context-awareness.

CAMP with

sampling profiles memory instructions at a few initial iterations and randomly

> M in the numbers of dynamic instances means millions.

- 45 -

Normalized Profiling Time(x)

Memory Usage(GB)

selected iterations of each loop, and all the memory instructions that are not

in a loop.
250 T T T T T T T T T T T T T
341.6 |f720.2 354.2(f7432 4550
00 —
200] context Oblivious
H cawr
150 b 2 | caMP @% +8)
- B camp @+ 4
i B camp @ +0)
100 4 |E campa%+s
O campa%+a)
0 campa%+o)
50 [~ I o
0= [=9 =] = o -—IL [k 2 !D_ E .E[[l_lzl]]_
g & Z =1 = = =] = 5} E
% ” 8 & g S S E £ E = = =
: & §f & B 2 2 g 2 E §E g %
- = 2 =2 § T F g F v 3
-+ =
= O
=
=T
(a) Profiling time normalized to native program execution
10 T T T T T T T T T
14.1GB 12.7GB (4%)
8 [12.4GB (1%) -
D Context Oblivious
W cavr
6 - | camp % +8)
B camp % +4)
B camp @ +0)
4 = | came % +8)
[0 camp%+4)
O campa%+o
) b _
0 =" 5 o -—‘ = 7] =] PUR = =z
s & ¢ § & % & 2 2 & E E =
iy v E o £ E 2 o = £ = = n
= ~ - ~ &l = = & o e < = s
= - ~ % = = - ot c =3 - =
- % * = = £ =
-+ = =
I =
2 <

(b) Memory usage

Figure 7.1 Profiling time and memory overheads.®

¢ Here, context-oblivious, CAMP, and CAMP (4% + 8) mean CAMP profiler

- 46 -

Figure 7.1 shows that CAMP without sampling suffers from 197.0x profiling
time and 2.7GB memory overheads on average. Compared to context oblivious
profiler, the context-awareness increases profiling time and memory usage by
1.9x and 1.6x respectively. Most of the increased overheads come from
generating additional dependencies between the same instructions with
different contexts that the context oblivious profiler cannot distinguish, while
context management overheads are negligible. Sampling dramatically reduces
the profiling time and memory overheads. CAMP that samples memory
instructions at initial 4 iterations and 1% randomly selected iterations shows

18.4x profiling time and 1.6GB memory overheads.

For 188.ammp, there is almost no profiling time and memory overhead
difference across context oblivious, CAMP and CAMP with sampling. The
main function of 188.ammp invokes a recursive function call,
read eval do, in which most of the program is executed. Since CAMP
considers a recursive function call site as a leaf node of a context tree, CAMP
creates only 7 context nodes for 188 .ammp, and profiles most of memory
instructions with the same context like context oblivious profiling as a

consequence. For other programs with recursive function calls such as

without context awareness, CAMP profiler without sampling, and CAMP
profiler that samples memory instructions at initial 8 iterations and 4%
randomly selected iterations of each loop respectively. CAMP (4% + 8) also
profiles all the memory instructions not in a loop.

- 47 -

177 .mesa, 300.twolf, 429 .mcf, 456 .hmmer and 462 .1libquantum,

CAMP creates effective context trees and generates precise profiling results.

429 .mcf suffers from high memory overheads compared to others. CAMP
creates history tables in page size granularity to amortize history table creation
overheads with spatial locality. Unfortunately, since 429.mcf sparsely
touches memory spaces that span over the page size, CAMP repeatedly and
inefficiently creates the history tables instead of reusing existing tables, so

CAMP suffers from significant memory overheads for 429 .mcf.

7.2. Sampling Accuracy

While sampling memory operations reduces profiling time and memory
overheads, sampling compromises precision and sensitivity. To evaluate
precision and sensitivity of the proposed heterogeneous sampling, this work
measures false positive and false negative of different sampling ratios. Here,
precision is the fraction of sampled dependencies that really exist, while
sensitivity is the fraction of real dependencies that are sampled. The precision
and sensitivity are calculated by equation 7.1. The heterogeneous sampling
adopts two different sampling methods such as a consecutive profiling that
profiles only a few consecutive initial iterations and a random sampling that
profiles randomly selected iterations. CAMP (4% + 8) means that all the
memory instructions at initial 8 consecutive iterations and 4% randomly

selected iterations of each loop are profiled. The heterogeneous sampling
- 48 -

profiles all the memory instructions not in a loop because the instructions are

not repetitive.

True Positive

Precision = - —
True Positive + # False Positive

True Positive

Sensitivity =
StV = 4 True Positive + # False Negative

Equation 7.1. Precision and Sensitivity of Sampling

- 49 -

For all the programs and sampling ratios without any exception, CAMP does
not generate any false positive dependency, thus showing 100% precision.
Since the heterogeneous sampling updates history tables for all the writes,
CAMP correctly finds corresponding memory write history elements for each
memory operations. Though the heterogeneous sampling updates history
tables for all the writes to guarantee 100% precision, Figure 7.1(a) shows that

the sampling still dramatically reduces the profiling time by 10.8x.

The heterogeneous sampling also increases sensitivity by efficiently tracing
regular and irregular memory access patterns. Figure 7.2 and Figure 7.1(a)
illustrate sensitivity and profiling time of the heterogeneous sampling with
different sampling ratios. Profiling a few consecutive initial iterations largely
increases the sensitivity by tracing regular memory accesses among
consecutive iterations that the random sampling could miss, while the
additional consecutive profiling incurs only a small profiling time increase.
For example, compared with 1% random sampling only, the additional
consecutive sampling for 4 initial consecutive iterations increases the

sensitivity by 16.1% at the expense of only 5.0% profiling time increase.

- 50 -

Sensitivity (\%)

100 T T T T

000D N.

CAMP (4% + 8)
CAMP (4% + 4)
CAMP (4% + 0)
CAMP (1% + 8)
CAMP (1% + 4)
CAMP (1% + 0)

164.gzip
175.vpr
177 .mesa
179.art
188.ammp
300.twolf
401.bzip2
429.mef
433 milc
456.hmmer
470.1bm
ARITHMEAN

462.libquantum

Figure 7.2 Sensitivity of CAMP with different sampling ratios.’

7 Here, precision of CAMP is not illustrated as a graph because the sampling

results show 100% precision for all the programs and sampling ratios.

- 51 -

Chapter 8

Related Work

8.1. Context-Aware Memory Profilers

Like CAMP, context-aware memory profilers [4, 18] generate memory
dependencies with their contexts such as function call stacks and loop nests.
However, none of them fully generates the memory dependencies between all

the instructions in a program.

T. Chen et al. [4] made full-transitive data dependence profiler using a unified
load/store history table. Since the history table only records the most recent
memory instruction, the profiler only generate dependencies between the
current memory instruction and the most recent memory instruction on the
same memory, and the compiler reconstructs full memory dependencies from
the profiling results with transitive relationship. However, since an instruction
can touch multiple memory addresses, the reconstruction can generate false
positive results. Moreover, while the profiler uses the expensive hash function
to access the elements in the table, CAMP accesses the elements in the history

tables in a few bitwise operations that require much less performance overhead.

- 52 -

Y. Sato et al. [18] generated dependences between code regions such as loops
and functions instead of instructions. Since there is no information about
dependences between instructions in the profiling results, the profiling results
limit speculative compiler optimization. Moreover, the profiler only generate

RAW dependences, so reordering instructions without renaming is limited.

8.2. Loop-Aware Memory Profilers

Loop-aware memory profilers [8, 10, 11, 22, 24] trace memory dependences
only with loop contexts. Although the profilers find inter-iteration and intra
iteration dependences like CAMP, they cannot distinguish dependences from

different function call stacks.

J. R. Larus [11] proposed automatic parallelization system using a loop-aware
memory profiler. The system checks inter-iteration dependences but does not
check intra-iteration dependences. Due to its inefficient memory access
history management, the profiler suffers from severe memory overhead and

time overhead.

M. Kim et al. [10] proposed SD3 profiler that is a parallel memory profiler.
SD3 reduces profiling time overhead with parallel profiling, and also reduces
memory usage overhead with data compression using frequent loop-stride
characteristics of computational program. Since each memory dependence

generation in CAMP is independent of each other if they access different

- 53 -

memory address, CAMP also can be parallelized like SD3, and additional

profiling overhead reduction can be achieved.

H. Yu et al. [24] proposed an object-based dependence profiler. The profiler
attaches tags to variables that have access history on the variables. This work
profiles a target loop instead of the whole program, so users should execute

the profiler multiple times to optimize multiple regions in a program.

R. Vanka et al. [22] proposed a set-based dependence profiler using software
signatures. The profiler statically finds relevant dependences that are required
for optimization, and profiles the instructions. Although the profiler has low
time overhead, the profiling results can be incorrect because the tool profiles

only pre-selected instruction sets.

A. Ketterlin et al. [8] optimized profiling overhead using two main techniques:
coalescing consecutive accesses and parameterizing loop nests. The profiler
treats consecutive data structures like arrays as a single entity. In other words,
the profiler supports variable profiling granularity for consecutive data
structure. Parameterizing loop nests reduces profiling overheads exploiting
static control loops where all the memory accesses are determined only by

parameters of the loops.

-54 -

8.3. Context Management in Profilers

Context management of CAMP is highly inspired by previous context-aware
performance profilers [2, 6, 27]. G. Ammons et al. [2] first introduced a call
tree in which each node reflects a call site. Adaptive calling context tree
profilers [6, 27] support sampling-based calling context management to reduce
performance overhead. Unlike the previous profilers [2, 6, 27], CAMP
constructs a context tree for every function call site and loop invocation. Since
the context of CAMP reflects not only call sites but also loop nests, CAMP
additionally has an iteration stack to store iteration counts of each loop in a

loop nest.

- 55 -

Chapter 9)

Conclusion

In order to make precise context-aware PDGs, this paper proposes a context-
aware memory profiler (CAMP) which traces memory dependencies with their
full context information. As a compiler-runtime cooperative system, CAMP
utilizes a static context tree to make concise representations for every
obtainable context in a program. At profiling time, these concise
representations enable efficient discovery of context-aware dependencies.
Regarding the resultant PDGs, CAMP discovers that 70.8% of total
dependencies that a context oblivious profiler makes are false; it allows us to
deny a significant number of false dependencies which stem from ignorance
of contexts, thus resulting in more precise PDGs. Through a case study, we
show that how a precise context-aware PDG facilitates a compiler optimization
such as speculative parallelism. With the heterogeneous sampling method,
CAMP finds 73.3% of all possible memory dependencies at the finest
granularity (i.e. instruction-pairwise and byte-level), while suffering from
only 18.4x slowdown for 12 programs from SPEC, which is considered

acceptable in practice.

- 56 -

rN
ry
off
rr

zeade EAstE delEe AEZS ERA ki

}

I
=]

Program Dependence Graph(PDG)E X =213 FE2Xo glo]A

AAARD 9SSy, 53], Z 23U (profiling)ell <3|
X oxg AAE Speculative PDG = A% H 43} (automatic

parallelization)$} 22 &A% HA 35 7|Hol| BFHozn 2.
A, [9, 13l FZo EAe= &4 o #AE v
Teyddz FAsto], depdded A BAeA &G ofE dAE

RAgoRA Tzaag gAs o).

add PDG & 223 d7t s40=2 AT o=, 7 &
9 A (function call site)9} FZ ¢ e ZH A~E(context) JHE
g3 Qlojo {E A3 PDG & WHE ¢ Ar WY ZHAE

4urt glow te ZussoA 499 2 ¥He] e 7RI

T A Hol B AA gEA/AE YA A oA Ad, F3x
gt ZY2E Juye glgw, F2x gk F7F Qto A s =
o] A (intra-iteration dependency) <} ®HFE F7F Alo]o

-57 -

)
o
ol
ol
s
le)
I
e
=)
=
=]
)
=

|
.
@
=
oY)
=
o
=)
[aN
@
o]
(@)
=)
[aN
@
=)
@]
<
Ll
-4
M
ok
>
15
X,

(context—aware) T 23S wrE5o]of 3r},

B o AFgAE g A3 PDGE AAE7] Y&, 29~

o

Aol 223d#HQ CAMPE A|¢tstt}. CAMPE X2 13o A wb

WAt B ZHAE AEE wggle] 7|53 CAMP A3
e 2RI FxE JAoRE FAGe, ZrRIadA EAT
T A BRE ZUA~eEZ gHEE ZY2AE EP(Context Tree)Z

WEsd), o CAMPY eyl Azdol @ shite] B3 ZusE

=

agel AW ZEsEsl Wad deig 53 2Ys

(m

Dol 44 ZE2E IDE Hobe hdd abEdibs ©

2
A
ot

24 g 2HaEs Aaad Aze 2UsEd4 27 30ad),
27\ (store) st e Wmel ol #EHW Y wEe Faol A
2% BA N5 gt Wy oF BAS ANty 1 A3
g @esee @ AgAh ARHoR, FHUAE EIE CAMP

o ZEatdy NS @FAVE due ems=g gase

i)
o>,
X

(0]
18
o
o
o
v

- 58 -

EAst= =% H(stripe) ME oF BAES FHof= dEHH
MZ e (consecutive sampling)e]th. F AMZ¥H 7|HE A5
AbE o R F3o] EAst= WFEe] oEHAE Frob Atk
w3, AR FA(false positive)o] A= AL WA &7 3],
29 oo} Agaglol 27| (store) Aite]l WAy wiEE A
71= Hlo]E (History Table)& %7|3 39t}

SPEC ®l A vk [1]e] wiste A3 Ao, CAMP & Ab&std o &
HAE o5 Ags Fotd = ds W oY ¢ €S FEE

Hds 8 4 . CAMP + ZHYX2EEZ QXA 3A E3+=

N
o
L
i
B
o,
_Q
o~
(@]
)—A
U‘
N
()
\\]
lo
o
o
=2
rlr
o
i
ot
i)
4»
%2
rlr
-
s
N
L

analysis)<

A (static

4%

=y

B

T

M

=
_—

e 4~z Tt}

il

® SPEC INT2000 ¥ SPEC2006

il

speculative PDG ¢ #

ghet

Ay
fn

my
vze)

)
<]
B

IH.

- 60 -

REFERENCES

[2] Standard Performance Evaluation Corporation. http/Amww.spec.org.

[2] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters with flow and
context sensitive profiling. In Proceedings of the ACM SIGPLAN 1997 Conference on
Programming Language Design and Implementation, 1997.

[3] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August. Revisiting the sequential
programming model for multi-core. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, 2007.

[4] T. Chen, J. Lin, X. Dai, W.-C. Hsu, and P-C. Yew. Data dependence profiling for speculative
optimizations. In Compiler Construction. 2004.

[5] D. A. Connors. Memory profiling for directing data speculative optimizations and scheduling.
Master’s thesis, Department of Electrical and Computer Engineering, University of HHlinois,
Urbang, IL, 1997.

[6] N. Froyd, J. Mellor-Crummey, and R. Fowder. Low-overhead call path profiling of unmodified,
optimized code. In Proceedings of the 19th Annual Intemational Conference on
Supercomputing, 2005.

[7] N. P. Johnson, H. Kim, P. Prabhu, A Zaks, and D. 1. August. Speculative separation for
privatization and reductions. In Proceedings of the 33rd ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2012.

-61 -

[8] A. Ketterlinand P. Clauss. Profiling data-dependence to assist parallelization: Framework, scope,
and optimization. In Proceedings of the 2012 45th Annual IEEE/ACM Intemational
Symposium on Microarchitecture, 2012.

[9] H. Kim, N. P. Johnson, J. W. Leg, S. A. Mahlke, and D. I. August. Automatic speculative
DOALL for clusters. In Proceedings of the Tenth Intemational Symposiumon Code Generation
and Optimization, 2012.

[20] M. Kim, H. Kim, and C.K. Luk. SD3: A scalable approach to dynamic data-dependence
profiling. In Proceedings of the 2010 43rd Annual IEEE/ACM Intemational Symposium on
Microarchitecture, 2010.

[11]J. R. Larus. Loop-evel parallelism in numeric and symibolic programs. IEEE Transactions on
Parallel and Distributed Systerns, July 1993,

[12] C. Lattrer and V. Adve. Livm: A compilation framework for lifelong program analysis &
transformation. In Proceedings of the Intermational Symposium on Code Generation and
Optimization, 2004.

[23]W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Torrellas. POSH: a TLS compiler
that exploits program structure. In Proceedings of the 11th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2006.

[14] M. Mehrara, J. Hao, P-C. Hsu, and S. Mahlke. Parallelizing sequential applications on
commodity hardware using a low-cost software transactional memory. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design and Implementation,
2000.

[15] C. G. Quinones, C. Madriles, J. S'anchez, P. Marcuello, A. Gonz’alez, and D. M. Tullsen.

Mitosis compiler: An infrastructure for speculative threading based on pre-computation slices. In

-62 -

Proceedings ofthe 2005 ACM SIGPLAN Conference on Programming Language Designand
Implementation, 2005.

[16] L. Rauchwerger and D. A. Padua. The LRPD test: Speculative runtime parallelization of loops
with privatization and reduction parallelization. IEEE Transactions on Parallel Distributed
Systems, 1999,

[17] Y. Sato, Y. Inoguchi, and T. Nakamura. On-the-fly detection of precise loop nests across
procedures onadynamic binary translation system. In Proceedings of the 8th ACM Intemational
Conference on Computing Frontiers, 2011.

[28] Y. Sato, Y. Inoguchi, and T. Nakamura. Whole program data depencdence profiling to unwveil
parallel regions in the dynamic execution. In IEEE Intemational Sympaosium on Workioad
Characterization, 2012.

[19] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to thread-level
speculation. In Proceedings of the 27th Intemational Sympasium on Computer Architecture,
2000.

[20]J. G. Steffan, C. Colohan, A. Zhai,and T. C. Mowry. The STAMPede approach to threacHevel
speculation. ACM Transactions on Computer Systems, 2005.

[21] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to exploiting coarse-
grained pipeline parallelism in ¢ programs. In Proceedings of the 40th Annual IEEE/ACM
International Sympasium on Microarchitecture, 2007.

[22] R. Vanka and J. Tuck. Efficient and accurate data dependence profiling using software
signatures. In Proceedings of the Tenth Intemational Symposium on Code Generation and
Optimization, 2012.

[23] P. Wu, A. Kejariwal, and C. Cas caval. Languages and compilers for parallel computing.

chapter Compiler-Driven Dependence Profiling to Guide Program Parallelization. 2008.
- 63 -

[24] H. Yuand Z Li. Fast loop-level data dependence profiling. In Proceedings of the 26th ACM
International Conference on Supercomputing, 2012.

[25] X. Zhang and S. Jagannathan. Alchemist: A transparent dependence distance profiling
infrastructure. In Proceedings of the 2009 Intemational Symjposium on Code Generation and
Optimization, 2009.

[26]H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering hidden loop level parallelism
in sequential applications. In IEEE 14th Intemational Symposium on High Performance
Computer Architecture, 2008.

[27] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate, efficient, and adaptive calling
context profiling. In ACM SIGPLAN 2006 Conference on Programming Language Design
and Implementation, 2006.

[28] C.Zillesand G. Sohi. Master/slave speculative parallelization. In Proceedings of the 35th Annual

ACMI/IEEE Intermational Symposium on Microarchitecture, 2002.

- 64 -

Acknowledgements

HACE

SHA|

ol

ﬂl
Ho
0P

23!

Gl
o

A]

A 9

Al

N
A

o]

o]

3} 744

=g Y.

At

A K

ol

o
{F
H

—_—

[m
ﬁo

‘_Ir,”
!
0
£

ZO

A
<

N

3

el
Yy
Nd

B

HAF =Y

L

X
<
o

et
o5

ol

AT oA

A5y

Z 3]-5_7

A

ul- o
==

i

—_
file)

N

o

Uo7

wvhge Aok

Tor

o A =

A=
N
ﬁo

0
o
Np
B

<7
—
file)

il

GRIR]

A2 e

9|

2 X

(e
1l

1 FA7F o

dstar AEuth

oji
TR

~NH

N

o
Yy
N

214

& Hl o] Eol &}

{|m
<H
=
—_
file)

&

X
el

- 65 -

Mo

7HAE

A 22

q 5} o]

S
L

1513
=

F 11

Xo]—

3

A

o

L

A Fel= dvs

=
=

A},

=

{|m
e
.
file)

==
1o

A

X0

- 66 -

