
Liberty Queues for EPIC Architectures
Thomas B. Jablin1 Yun Zhang1 James A. Jablin2 Jialu Huang1 Hanjun Kim1 David I. August1

1Department of Computer Science, Princeton University

2Department of Computer Science, Brown University

{tjablin,yunzhang,jialuh,hanjunk,august}@princeton.edu jjablin@cs.brown.edu

Corresponding Author: Thomas B. Jablin

Liberty Queues for EPIC Architectures

Thomas B. Jablin Yun Zhang James A. Jablin2 Jialu Huang Hanjun Kim David I. August

Department of Computer Science, Princeton University 2Department of Computer Science, Brown University

{tjablin,yunzhang,jialuh,hanjunk,august}@princeton.edu jjablin@cs.brown.edu

Abstract

Core-to-core communication bandwidth is critical for high-performance pipeline-parallel programs. Hardware

communication queues are unlikely to be implemented and are perhaps unnecessary. This paper presents Liberty

Queues, a high-performance lock-free software-only ring buffer, and describes the porting effort from the

original x86-64 implementation to IA-64. Liberty Queues achieve a bandwidth of 500 MB/s between unrelated

processors on a first generation Itanium 2, compared with 281 MB/s on modern Opterons and 430 MB/s on

modern Xeons claimed by related works. We present bandwidth results for seven different multicore and

multiprocessor systems, as well as a sensitivity analysis.

Categories and Subject Descriptors D.1.3 [Programming Techniques]: Concurrent Programming—Parallel

Programming

General Terms algorithms, performance, experimentation

Keywords smtx, nonblocking synchronization, lock-free, queue, streaming instructions, pipeline parallel,

multicore, multiprocessors

1. Introduction

Pipeline parallelism has achieved scalable performance on general purpose applications previously thought dif-

ficult or impossible to parallelize [1]. However, these parallelizations run on simulated Itanium processor mod-

ified to support synchronization arrays [14]. In the simulation, core-to-core communication via synchronization

arrays was as cheap as a load or store to L2 cache.

Software Multithreaded Transactions (SMTX) reproduces these simulated parallelizations on real hard-

ware [13]. Since synchronization arrays do not exist in real hardware, Liberty Queues provide a high-

performance software-only replacement. SMTX uses queues to communicate speculative loads and stores to a

2

commit thread. For each speculative load or store, SMTX enqueues the address and value. Thus, the bandwidth

demands on the queue can be twice as high as main memory bandwidth. This is a much more ambitious per-

formance goal than previous core-to-core communication systems. By contrast, FastForward merely attempts

to match the bandwidth of Gigabit Ethernet [2, 3]. In SMTX, the producer thread is always busier than the

consumer thread, therefore Liberty Queues shift the communication burden to the consumer thread.

Liberty Queues achieve high bandwidth core-to-core communication on a wide range of multicore and

multiprocessor systems. This paper shows experimental results on seven systems, including desktop and server

microprocessors. The maximum core-to-core average bandwidth was 2.49 GB/s on a 2.4 GHz Xeon E5530,

with an overhead of 3.21 ns per produce-consume pair. The minimum core-to-core average bandwidth was

281 MB/s on an Itanium 2, with an overhead of 15.9 ns. These performance results compare favorably with

FastForward queues which achieved 281 MB/s with 28.5-31 ns overhead on a 2.66 GHz Opteron 2218 [3].

The remainder of this paper is organized as follows. Section 2 provides background. Section 3 describes

the implementation of Liberty Queues. Section 4 describes how the highly optimized and architecture specific

Liberty Queues were ported to Itanium. Section 5 presents a detailed evaluation on seven systems, including

an Opteron, several Xeon of varying micro-architecture, two Itanium and a desktop Core 2 Duo, demonstrating

overall performance stability and robustness. Section 7 discusses the problem of deadlock as it applies to lock-

less queues in pipeline-parallel programs. Section 8 discusses related work, and section 9 concludes.

2. Background

Multithreaded queue implementations based on locks are impractical. Diagnosing naı̈ve queue implementations

reveals two forms of unnecessary overhead: cyclic dependencies between producer and consumer and excess

cache state transitions. There exist few efficient implementations for a single-producer/single-consumer (SP/SC)

concurrent lock-free (CLF) queue: Lamport’s CLF queue [6], the FastForward queue [3], Delayed-Buffer Lazy-

Synchronization (DBLS) Queues [17], and MCRingBuffer [7, 8]. Other implementations of queues exist but

focus on the related problem of a multiple-producer/multiple-consumer (MP/MC) CLF queue. MP/MC queues

yield worse performance than the SP/SC case.

2.1 Lamport’s CLF Queue

Lamport devised the first implementation of a CLF queue and proved that explicit synchronization is unneces-

sary under sequential consistency. Lamport’s CLF queue does not require the use of a lock to serialize producer

and consumer. In Lamport’s queues use a circular buffer. A tail points to the first writable element in the buffer

3

and a head points to the first readable element. The producer and consumer increment the tail or head pointer

after writing or reading respectively. The consumer and producer check both that the head and tail pointers are

not equal to avoid passing each other. Sharing control data between producer and consumer causes cache line

thrashing.

2.2 The FastForward CLF Queue

The FastForward CLF queue improves on Lamport’s implementation by optimizing cache behavior. in Fast-

Forward queues the producer and consumer have exclusive read and write access to the tail and head pointers,

respectively. To avoid passing each other, the consumer writes NULL values after reading and the producer

checks that array elements are NULL before overwriting them. The head and tail indexes are never shared

and are always cache resident. To prevent cache line thrashing, FastForward temporally slips the producer and

consumer. No enqueue and dequeue memory accesses operate on the same cache line.

2.3 DBLS and MCRingBuffer

DBLS and MCRingBuffer improve performance by employing batch updates to the head and tail pointers to

reduce cache line contention. The producer and consumer will update private copies of the tail and head for

several iterations before updating a shared copy. The differences between DBLS and MCRingBuffer are subtle

and will be discussed in a later section. MCRingBuffer is the most similar implementation to Liberty Queues,

so a more detailed description appears in the next section.

3. Implementation

This section describes the Liberty Queue’s implementation, and contrasts this implementation with MCRing-

Buffer [7, 8].

3.1 Data Structures

Lamport’s CLF queue causes cache thrashing on multicore multiprocessor systems. Each produce must read the

tail pointer and update the head pointer. Each consume reads the head pointer and updates the tail pointer. Thus,

for each produce or consume, a cache line on the modifying processor transitions from shared to modified[11].

Liberty Queues use a variation of the MCRingBuffer system of batch updates and cache-aware data layout to

minimize cache thrashing.

Figure 1(a) shows the MCRingBuffer data structure, and Figure 1(b) shows the Liberty Queue data structure.

Both data structures have three sections. The first section, contains the producer’s local variables. These

4

1 /* Producer’s local variables */
2 int localRead;
3 int nextWrite;
4 PAD(1, sizeof(uint64_t));
5
6 /* Control variables */
7 volatile int read;
8 volatile int write;
9 char cachePad2[CACHE_LINE - sizeof(int)];

10
11 /* Consumer’s local variables */
12 int localWrite;
13 int nextRead;
14 char cachePad3[CACHE_LINE - sizeof(int)];
15
16 uint64_t *element;
17

(a) The MCRingBuffer internal data-structure.

1 /* Producer’s local variables */
2 long nextWrite;
3 PAD(1, sizeof(uint64_t));
4
5 /* Control variables */
6 volatile int read;
7 volatile int write;
8 char cachePad2[CACHE_LINE - sizeof(int)];
9

10 /* Consumer’s local variables */
11 int localWrite;
12 int nextRead;
13 char cachePad3[CACHE_LINE - 2 * sizeof(int)];
14
15 uint64_t *element;
16

(b) The Liberty Queue internal data-structure.

Figure 1. Comparison between Data Structures

variables are read and written by the producer and never the consumer. The next section contains control or

global variables read and written by producers and consumers. The last section contains the consumer’s local

variables, which are read and written only by the consumer.

MCRingBuffer maintains a symmetrical relationship between producers and consumers. In the common

fast case, producers and consumers may only update their local variables. In the rare case, consumers and

producers update the control variables after consuming or producing a “batch” of data. Updating the shared

control variables will yield cache ping-ponging, but the MCRingBuffer implementation only does this once per

batch. Generally, large batch sizes yield fewer ping-pongs and better performance.

MCRingBuffer is a general-purpose communication framework. Liberty Queues, however, were designed

around SMTX’s workloads. For SMTX, the most common form of communication is from a process performing

5

speculative computations to a process checking for misspeculation. The producer should always be “busier” than

the consumer, and so Liberty Queues shift the burden of communication from the producer to the consumer.

Whereas in MCRingBuffer, the control variables were owned equally by producer and consumer, in Liberty

Queues, the producer enjoys an implicit “right of way” when accessing control variables.

The Liberty Queue’s producer no longer maintains a local copy of the read variable and reads the control

variables directly. Additionally, the Liberty Queue’s nextWrite variable is 64-bit. The reason for this change

will be explained in Section 3.2.

3.2 Producers

Figure 2(b) shows the Liberty Queue produce function. To produce a value, the Liberty Queue first writes a value

to the queue. If this produce completes a batch of data, check to see if the producer is in danger of overtaking

the consumer. If so, execute a callback and sleep, waiting for the situation to improve. If not, update the control

variables to make writes visible to the consumer. Updating the control variables to make writes visible to the

consumer is called flushing the queues and is analogous to flushing a file. For correctness, the callback function

must flush the queue which called it. Further discussion of the callback’s purpose is deferred to Section 6.

Figure 2(a) shows the MCRingBuffer produce function. In contrast to the similarities in data structures

between Liberty Queues and MCRingBuffer, the produce functions are very different. MCRingBuffer is non-

blocking. Non-blocking queues are more general than their blocking counterparts. However, non-blocking queue

implementations are vulnerable to deadlock if more than one queue is used. The problem of deadlock for queues

is revisited in a later section, but it motivates the use of callbacks in Liberty Queue’s producer and consumer.

MCRingBuffer checks that the queue is not full before a produce operation. Liberty Queues check that there

is room in the queue for the next produce, after producing a value unconditionally. This design decision is very

unorthodox, and the motivation is to help compilers optimize the queues. Liberty Queues are intended to be

inlined aggressively. From the compiler’s perspective, the sleep waiting loop may never halt. A compiler will

not move the store to the queue above the check. Placing the checks after the store makes the store unconditional.

This allows the compiler to schedule the store earlier for better instruction-level parallelism.

Liberty Queues utilize Streaming SIMD Extension’s (SSE) streaming store instruction for better bandwidth

and performance stability. Streaming stores bypass L2 cache as soon as an entire cache line is written and violate

x86’s usual coherence guarantees. Loads will not see the values of streaming stores until sfence instruction

executes. The performance implications of this design decision appear in section 5.

6

1 function produce(uint64_t element)
2 {
3 int afterNextWrite = NEXT(nextWrite);
4 if(afterNextWrite == localRead) {
5 if(afterNextWrite == read) {
6 return INSERTED_FAILED;
7 }
8 localRead = read;
9 }

10 buffer[nextWrite] = element;
11 nextWrite = afterNextWrite;
12 wBatch++;
13 if(wBatch >= batchSize) {
14 write = nextWrite;
15 wBatch = 0;
16 }
17 return INSERT_SUCCESS;
18 }

(a) The MCRingBuffer Produce Process

1 function produce(uint64_t value, function callBack)
2 {
3 int index = nextWrite >> 32;
4 uint64_t *data = truncate32(localWrite);
5 streamWrite(data + index, value);
6 nextWrite = NEXT(nextWrite);
7 index = nextWrite >> 32;
8 if(index % BATCH_SIZE == 0) {
9 if(distance(nextWrite, read) < DANGER) {

10 /* Blocking path */
11 callBack();
12 while(distance(nextWrite, read) < DANGER)
13 usleep(10);
14 } else {
15 /* Fast path */
16 memoryFence();
17 write = index;
18 }
19 }
20 }

(b) The Liberty Queue Produce Process

Figure 2. Comparison between Produce Process

In the fast common case, MCRingBuffer uses variables nextWrite, localRead, buffer, wBatch, and

batchSize. Liberty Queues only use localWrite. If the queue implementation is not inlined, MCRing-

Buffer will require five loads and three stores. By contrast, the non-inlined version of Liberty Queues require

only one load and two stores per invocation. Liberty Queues sacrifice readability and flexibility for raw perfor-

mance. In particular, Liberty Queues make batch size a compile time decision and require it to be a power of

two for best performance. Additionally, Liberty Queues always allocate the underlying queue buffer somewhere

in the lower 32 bits of memory. The lower 32-bits of nextWrite hold the buffer’s address, and the upper 32-

7

1 function consume(uint64_t *element)
2 {
3 if(nextRead == localWrite) {
4 if(nextRead == write) {
5 return EXTRACT_FAILED;
6 }
7 localWrite = write;
8 }
9 *element = buffer[nextRead];

10 nextRead = NEXT(nextRead);
11 rBatch++;
12 if(rBatch >= batchSize) {
13 read = nextRead;
14 rBatch = 0;
15 }
16 return EXTRACT_SUCCESS;
17 }

(a) The MCRingBuffer Consume Process

1 uint64_t sq_consume(function callBack)
2 {
3 if(nextRead == localWrite) {
4 if(nextRead == write) {
5 /* Blocking path */
6 callback();
7 while(write == nextRead)
8 usleep(10);
9 } else {

10 /* Fast path */
11 read = localRead;
12 }
13 localWrite = write;
14 }
15 uint64_t val = buffer[nextRead];
16 nextRead = NEXT(nextRead);
17 prefetch(buffer + nextRead + QPREFETCH);
18 return val;
19 }

(b) The Liberty Queue Consume Process

Figure 3. Comparison between Consume Process

bits hold the index into the buffer. When inlining, GCC is clever enough to promote nextWrite to a register.

Inlined Liberty Queues require zero loads and one store per produce.

3.3 Consumers

Figure 3(b) shows the Liberty Queue consume function. When consuming, the Liberty Queue first checks the

local copy of the write variable to determine if any values are available to dequeue. If not, the queue consults the

shared control variables. If this check fails as well, the callback function executes and the queue sleeps, waiting

for the producer to enqueue more data. If the control variable indicates there are more values already enqueued,

the consumer updates the read control variable with its copy of local state. Whether or not the queue blocked,

8

the consumer updates the local copy of the write state. Copying the local read state to the read control variable

is called reverse flushing. A correct callback function for the consumer must at least reverse flush the queue.

At this point, regardless of the path of execution, there is at least one value ready to dequeue. The consumer

dequeues a value and updates local state. Finally, the consumer prefetches a distant future value from the queue,

and returns the dequeued value.

The consumer is simpler than the producer code, and more similar to the corresponding code in MCRing-

Buffer, shown in Figure 3(a). The most important difference is that in Liberty Queues the consumer does not

update the global read state unless it updates its local copy of the write state. This policy greatly favors produc-

ers over consumers. Every time the consumer writes to the control variables it will cause a cache ping-pong, so

the consumer delays these writes as long as possible.

The consumer prefetches many accesses ahead using the 64-bit SSE prefetching mechanism. Unlike prefetch-

ing with a load instruction, the SSE prefetch instruction will never cause a stall, does not require a register, and

will not fault if the address is unreadable. Prefectching improves bandwidth and performance stability as will

be seen in the Experiments Section.

3.4 Tunable Parameters

Liberty Queues use three major tunable parameters: queue size, batch size, and prefetch distance. Larger

queue size helps compensate for bursty communication patterns or consumers with variable processing times.

Experiments showed that the only disadvantage of long queues was potentially exhausting 32-bit address space.

Once the queues are long enough to buffer out bursts by producers and slow processing by consumers, there

are no performance gains for increasing the size further. Liberty Queues default to 16 megabytes. Batch size

determines how often the producer will update global state. Larger batches mean fewer updates and better

performance, but updating too infrequently causes the consumer to spin wait uselessly. Batch size defaults to

128 kilobytes. Finally prefetch distance determines how early the consumer will read data. The idea is to request

data far enough in advance that it reaches the L2 cache before a real request for that data. However, reading data

too early can cause cache pollution. Liberty queues prefetch 1 kilobyte ahead.

The present implementation “bakes-in” all three tunable parameters at compile-time. As previously men-

tioned this avoids loads and register pressure at runtime.

9

3.5 128-bit Queues

Liberty Queues also have a 128-bit queue implementation. SMTX, Liberty Queue’s most important client,

enqueues a 64-bit address and a 64-bit value at the same time. The 128-bit queues reduce the overhead of

producing very slightly by checking for queue fullness once for each 128-bits produced. On most platforms,

128-bit queues have very slightly better bandwidth than 64-bit queues.

4. Porting to EPIC

Porting to Itanium proved remarkably easy. First, the x86 specific inline assembly was replaced with Itanium

equivalents. All of the changes were one-to-one replacements. x86-64 uses the exotic movntiq SSE instruction

to execute streaming stores bypassing the cache and storing directly to memory. On Itanium the more mundane

st8.nta instruction suffices. The sfence instruction used to ensure all streaming writes are visible before

updating control state becomes IA-64’s mf instruction. Similarly, the x86-64 non-temporal prefetch instruction

prefetch.nta becomes lfetch.nta on IA-64.

At the outset of the project inline assembly was believed to limit Liberty Queues’ portability, particularly

since the queues rely on fairly obscure instructions. Since all of the instructions have direct equivalents on IA-

64, there may be value in a thin portability library. Exploring the MIPS and ARM architectures reveal that they

have the same primitives as x86-64 and IA-64 and could easily be targeted by future work.

On the other hand, porting from x86-64 Linux to IA-64 Linux proved relatively challenging contrary to

initial expectations. x86-64 Linux provides a flag for the mmap syscall named MAP 32BIT, which can be used

to force an anonymous mapping into the lower 32-bits of address space. Recall that the data field of the Liberty

Queues must be in the lower 32-bits of memory. IA-64 Linux provides no comparable functionality. Even more

frustratingly, requests for anonymous pages tend to be mapped immediately above the first 32-bits of memory.

The long term solution to this problem will be to hack the IA-64 Linux kernel to support the MAP 32BIT flag.

The short term solution is to mmap all queues into a region of memory with a fixed upper 32-bit address. The

upper 32-bits become a constant chosen at compile time and used at runtime to reconstruct the full 32-bit buffer

pointer from only the lower 32-bits.

5. Experiment Results

In this section, we performed experiments on seven different machines showing the Liberty queue yields a

superior performance results.

10

5.1 Experimental Platforms

Machine Name Module Number Microarchitecture Frequency L2 Cache CPU/ Die/ Core/ Thread/ Total
System CPU Die Core Threads

Clovertown Intel Xeon E5310 Clovertown 1.60 GHz 4 MB 2 2 2 1 8

Dunnington Intel Xeon X7460 Dunnington 2.66 GHz 3 MB L2 4 3 2 1 2416 MB L3

Conroe Intel Core 2 Duo Conroe 2.66 GHz 4 MB 1 1 2 1 2

Egypt AMD Opteron Egypt 2.00 GHz 8 MB 2 1 2 1 4Processor 846

Nehalem Intel Xeon E5530 Nehalem 2.40 GHz 8 MB 1 1 4 2 8

McKinleyA Intel Itanium 2 McKinley 1.5 GHz 256 KB 192 1 1 1 192

McKinleyB Intel Itanium 2 McKinley 900 MHz 256 KB 2 1 1 1 2

Table 1. Experimental Platforms

Table 1 shows the experimental platforms used in this study. The Core 2 Duo is the only desktop-class system

in the study. The Opteron system is a proxy for the Opteron 2218 system used to validate the FastForward

queues. The Opteron 846 used in this study is from the generation immediately preceding the 2218, uses DDR

instead of DDR2 memory, is clocked 660 MHz slower, and has half the L2 cache. The four- and six-core

Xeon E5310 and X7460 are both relatively recent Xeon multicore multiprocessor systems and demonstrate

how Liberty Queues perform when communicating across the systems’ buses. The E5530 shows the affects of

Nehalem’s new memory architecture and hyperthreads. The two Itanium 2 systems show the performance of

Liberty Queues on EPIC architectures.

5.2 Benchmarking

The benchmark program allocates two queues and forks. Let the parent process be called the producer and the

child process the consumer.

The parent process calls clock gettime and stores the current time. Then it produces one billion 64-bit

integers to the first queue, while simultaneously computing their sum. The producer then consumes a 64-bit

integer from the second queue. The producer prints out the sum and the value consumed. Finally, the parent

process calls clock gettime and prints the difference in time between the first and second calls.

The consumer process consumes one billion 64-bit integers from the first queue and computes their sum.

After computing their sum, the consumer produces the value to the second queue and exits.

11

64 bits

128 bits

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

C
lovertow

n

D
unnington

C
onroe

Egypt

N
ehalem

FastForw
ard

A
v
er

ag
e

B
an

d
w

id
th

 (
G

B
/s

)

Figure 4. The bandwidth of 64- and 128-bit queues on each of the test systems and FastForward’s reported
bandwidth.

The overhead of the queues is the number of values produced and consumed divided by the running time of

the benchmark as reported by the parent process. Each datapoint is the average of 16 runs of the benchmark per

target.

5.3 Bandwidth

Figure 4 shows the bandwidth of Liberty Queues on each test system. The bandwidth of the original FastFor-

ward queue implementation is shown at the far right for comparison. The most surprising result is the perfor-

mance of 128-bit produces on Nehalem. The origin of this speedup is still unknown. Nehalem may be fusing two

64-bit stores into a single 128-bit macro-operation. By contrast, the Itanium based systems both show a large

slow down for 128-bit queues. A later subsection will reveal that code bloat is the source of this performance

problem.

The initial MCRingBuffer evaluation[7, 8] achieved peak bandwidth of 1.19 GB/s for 64-bit produces

between two cores on the same die and 430 MB/s between cores on different processors. The MCRingBuffer

evaluation used a Xeon X5355, which is the same processor generation as Clovertown, but is clocked 1 GHz

12

Streaming and Prefething

Streaming

Prefetching

Neither

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Clovertown Dunnington Conroe Egypt Nehalem

A
v
er

ag
e

B
an

d
w

id
th

 (
G

B
/s

)

Figure 5. The bandwidth of 64-bit queues with prefetching and streaming enabled and disabled.

faster and features a faster FSB. Clovertown’s bandwidth with Liberty Queues is 1.53 GB/s for cores sharing an

L2 cache, and 1.54 GB/s for unrelated cores.

5.4 Streaming

Figure 5 shows the performance consequences of streaming and prefetching. Streaming and prefetching

are slightly advantageous on their own and in combination. The only exception is the Dunnington system.

Performance counters indicate that the other systems automatically do stride prefetching. For Liberty Queues,

Dunnington does not stride prefetch. Additionally, Dunnington’s L3 cache is too large. The other systems have

smaller caches and must write to memory. Dunnington’s L3 cache is the same size as the queues, enqueued

data stays on the producers processor. Performance-wise, it is more desirable for the queue data to go directly

to main memory, where the consuming processor can find it. The streaming writes bypass the L3 cache, side-

stepping the issue. Increasing the size of the queues by a factor of four and enabling prefetching yields similar

performance to the prefetching-streaming implementation, but is obviously impractical.

Figure 6 shows the range of runtimes as a percentage of average runtime for the same data used in figure

5. Although streaming and prefetching has little affect on bandwidth on most applications, it does improve

13

Streaming and Prefething

Streaming

Prefetching

Neither

 0

 5

 10

 15

 20

 25

 30

 35

 40

C
lovertow

n

D
unnington

C
onroe

Egypt

N
ehalem

M
cK

inleyA

M
cK

inleyB

P
er

ce
n
ta

g
e

o
f

v
ar

ia
n
ce

 (
%

)

Figure 6. Range of runtimes as a percent of average runtime.

the consistency of results. The streaming-prefetching queues are never as fast as the fastest non-streaming

non-prefetching queue runs, but also never as slow as the slowest. The next section will show that streaming

and prefetching can either help or hurt performacne depending on the topological relationship between the

producing and consuming cores. In this section, the operating system schedules producing and consuming

processes without pinning by the user.

5.5 Inlining

The FastFoward queue implementation calls the produce and consume function through an indirect function

pointer. In the interests of fair comparison, Figure 7 shows the bandwidth of Liberty Queues when compiled with

-fno-inline and -fPIC. The bandwidth on all x86-64 test systems is greatly reduced, but the bandwidth on

Itanium systems actually increased for 128-bit produces. This indicates that the inlined queues caused too much

code bloat and overwhelmed the Itanium’s instruction cache. On x86-64 systems, removing inlining increases

the difference in performance between the 64- and 128-bit queues. This indicates that enqueue and dequeue

operations are fast enough that function call overhead is non-trivial. Even without inlining, all Liberty Queue

implementations outperform FastForward queues.

14

64 bits

128 bits

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

C
lovertow

n

D
unnington

C
onroe

Egypt

N
ehalem

M
cK

inleyA

M
cK

inleyB

FForw
ard

A
v
er

ag
e

B
an

d
w

id
th

 (
G

B
/s

)

Figure 7. The bandwidth of 64- and 128-bit queues with position independent code and no inlining.

6. Deadlock

This section explains the call back functions first mentioned in Section 3.2. MCRingBuffers [7, 8] will suffer

deadlock in some programs. Consider a program with two processes as shown in Figure 8 (a). In each iteration of

the first process(P1) produces one million words to the first queue(QA) and one word to the second queue(QB).

The second process(P2) will consume one million words from the first queue(QA) and one word from the second

queue(QB) per iteration. This seemingly innocuous program will deadlock.

Without loss of generality, assume a chunk size of 16 kilowords and a queue size of 2 megawords. QA sends

32 batches per iteration, but QB sends one batch per 16,000 iterations. In the first iteration in Figure 8 (b), P1

produces one million 64-bit words with 32 batches to QA, and P2 consumes them. P1 produces one word to QB,

but P2 waits on QB since P1 has not yet sent a batch.

In the second iteration in Figure 8 (c), P1 produces one million words, but P2 does not consume the words

since it is still waiting for QB. At the end of the second iteration there are two words in QB buffer, one million

words in QB, and P2 continues to wait on QB.

15

Waiting

BQon

Waiting

BQon

Waiting

BQon

Waiting

Qon A

(a) Queues and Program behavior (b) After 1st Iteration

(d) After 3rd Iteration(c) After 2nd Iteration

P2P1

AQ

Q B

1 element in buffer

1M produced

1 produced

1M consumed

P2P1

AQ

Q B

1M/iter

1/iter

P2P1

AQ

B

1M produced

1 produced

1M elements in buffer

2 elements in buffer

P2P1

AQ

Q B

1M produced

1 produced

3 elements in buffer

2M elements in buffer (full)

Q

Figure 8. Deadlock Example

In the third iteration in Figure 8 (d), P1 produces one million words to QA, and one word to QB. At the end

of the third iteration, there are two million words in QA completely filling it. P2 continues on QB.

Finally, in the fourth iteration P1 cannot produce to QA since it is completely full. P2 cannot read from QB

since P1 has not yet produced a full batch of data. The system is deadlocked.

To prevent deadlock, the Liberty Queue has a callback function, which is called right before the queue sleeps.

The programmer or compiler using the queue will supply a callback function that flushes all outgoing queues

and reverse flushes all incoming queues. By adding flush operations for other queues into the callback function,

Liberty Queues avoid deadlock. In the previous example, when P1 sleeps due to QA, QB is flushed by callback

execution. Now, P2 can consume data from QB, and data in QA will be consumed in the next iteration. Therefore,

P1 and P2 avoid deadlock.

7. Related Work

Since many applications for multiprocessor systems use queue data structures, there exists a wide array of previ-

ous work [3, 5–10, 12, 15, 16] on enhancing queue performance. Initially, different lock implementations were

tried in an attempt to reduced lock-based overhead (i.e. convoying and memory hot spots). These techniques

16

minimized the overhead of blocking and contention points. Subsequently, lock-based implementations were

abandoned in favor of non-blocking alternatives. Non-blocking implementations exposed more concurrency by

not enforcing mutual exclusion.

Many non-blocking queue implementations [5, 10, 15, 16] focus on MP/MC CLF queues. These queues

require higher overhead to avoid ABA problems [9]. Known solutions to the ABA problem rely on expensive

hardware synchronization primitives (Compare-and-set, Compare-and-swap, or load-linked/store-conditional)

and extra state information to maintain linearizability [4].

The three most closely related works to Liberty Queues are FastForward, MCRingBuffer, and DBLS.

FastForward Queues are the least similar. Liberty Queues, FastForward, and MCRingBuffer all employ the

same basic strategy. They avoid cache line thrashing by rarely reading or writing to global state. By contrast,

FastForward has no global state. FastForward’s producer and consumer know it is safe to write or read by

checking for NULL or not NULL respectively.

The differences between MCRingBuffer and DBLS are very subtle. MCRingBuffer improves on DBLS by

using cache-line padding to separate producer from consumer variables. DBLS updates cached state at fixed

intervals. MCRingBuffer does not update cached state if the producer or consumer can continue to make

progress with the current cached state.

Liberty Queues differs from MCRingBuffer, and DBLS by using aggressive prefetching and streaming.

Additionally, Liberty Queues favor producer performance over consumer performance. MCRingBuffer and

DBLS have no such bias.

8. Conclusion

Liberty Queues provide high performance core-to-core communciation for IA-64 and x86-64 architectures.

Liberty Queues achieve 500 MB/s on a first generation Itanium 2. Compared with FastForward’s 281 MB/s

bandwidth on a modern Opteron, and MCRingBuffer’s 430 MB/s bandwidth on modern Xeons. When executing

on systems more closely mirroring the MCRingBuffer and FastForward test systems, Liberty Queues achieve

bandwidths of 1.09 GB/s and 1.50 GB/s respectively. Nehalem offers the best performance at 2.49 GB/s.

Liberty Queues implementation most closely resembles MCRingBuffer, but is much more carefully tuned.

Additionally, MCRingBuffer treats producers and consumers equally, but Liberty Queues shifts most of the

overhead to the consumer end of the queue. This customization is useful in situations where the producer is

17

expected to be busier than the consumer. The opposite customization favoring the consuming process over the

producing process may be useful for other parallelization systems.

Porting Liberty Queues from x86-64 to IA-64 proved comparatively painless despite the highly optimized

and architecture sensitive nature of the queues. A second generation Liberty Queue implementation for IA-

64 could improve substantially on the performance in this work. A compiler level implementation of Liberty

Queues would be able to schedule producer code into unused instruction slots, allowing produces to execute for

free.

The paper evaluates Liberty Queues on seven different systems with two different architectures. We explain

the performance variations and experimentally justify the Liberty Queue’s design decisions. Liberty Queue’s

high bandwidth and low overhead laid the foundations for the SMTX parallelization framework

References

[1] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August. Revisiting the sequential programming model

for multi-core. In MICRO ’07: Proceedings of the 40th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 69–84, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-3047-8. doi:

http://dx.doi.org/10.1109/MICRO.2007.35.

[2] J. Giacomoni and M. Vachharajani. Efficient Point-To-Point Enqueue and Dequeue Communications. US Patent

Application. November 2008.

[3] J. Giacomoni, T. Moseley, and M. Vachharajani. FastForward for efficient pipeline parallelism: a cache-optimized

concurrent lock-free queue. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 43–52, New York, NY, USA, February 2008. ISBN 978-1-59593-795-7.

doi: http://doi.acm.org/10.1145/1345206.1345215.

[4] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. ACM Trans. Program.

Lang. Syst., 12(3):463–492, 1990. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/78969.78972.

[5] E. Ladan-mozes and N. Shavit. An optimistic approach to lock-free fifo queues. In In Proceedings of the 18th

International Symposium on Distributed Computing, LNCS 3274, pages 117–131. Springer, 2004.

[6] L. Lamport. Specifying concurrent program modules. ACM Trans. Program. Lang. Syst., 5(2):190–222, April 1983.

ISSN 0164-0925. doi: http://doi.acm.org/10.1145/69624.357207.

[7] P. P. Lee, T. Bu, and G. Chandranmenon. A lock-free, cache-efficient shared ring buffer for multi-core architectures.

In ANCS’09: ACM/IEEE Symposium on Architectures for Networking and Communications Systems, 2009.

[8] P. P. C. Lee, T. Bu, and G. Chandranmenon. A lock-free, cache-efficient multi-core synchronization mechanism for

line-rate network traffic monitoring. In IPDPS ’10: Proceedings of the 24th International Parallel and Distributed

18

Processing Symposium, April 2010.

[9] M. M. Michael and M. L. Scott. Nonblocking algorithms and preemption-safe locking on multiprogrammed

shared memory multiprocessors. J. Parallel Distrib. Comput., 51(1):1–26, 1998. ISSN 0743-7315. doi:

http://dx.doi.org/10.1006/jpdc.1998.1446.

[10] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using elimination to implement scalable and lock-free

fifo queues. In SPAA ’05: Proceedings of the seventeenth annual ACM symposium on Parallelism in algo-

rithms and architectures, pages 253–262, New York, NY, USA, 2005. ACM. ISBN 1-58113-986-1. doi:

http://doi.acm.org/10.1145/1073970.1074013.

[11] M. S. Papamarcos and J. H. Patel. A low-overhead coherence solution for multiprocessors with private cache

memories. In ISCA ’84: Proceedings of the 11th annual international symposium on Computer architecture, pages

348–354, New York, NY, USA, 1984. ACM. ISBN 0-8186-0538-3. doi: http://doi.acm.org/10.1145/800015.808204.

[12] S. Prakash, Y. H. Lee, and T. Johnson. A nonblocking algorithm for shared queues using compare-and-swap. IEEE

Trans. Comput., 43(5):548–559, 1994. ISSN 0018-9340. doi: http://dx.doi.org/10.1109/12.280802.

[13] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Speculative Parallelization Using Software

Multi-threaded Transactions. In Proceedings of the Fifteenth International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), March 2010.

[14] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August. Decoupled software pipelining with the synchro-

nization array. In Proceedings of the 13th International Conference on Parallel Architectures and Compilation Tech-

niques, pages 177–188, September 2004.

[15] W. N. Scherer, III, D. Lea, and M. L. Scott. Scalable synchronous queues. In PPoPP ’06: Proceedings of the eleventh

ACM SIGPLAN symposium on Principles and practice of parallel programming, pages 147–156, New York, NY,

USA, 2006. ACM. ISBN 1-59593-189-9. doi: http://doi.acm.org/10.1145/1122971.1122994.

[16] P. Tsigas and Y. Zhang. A simple, fast and scalable non-blocking concurrent fifo queue for shared memory

multiprocessor systems. In SPAA ’01: Proceedings of the thirteenth annual ACM symposium on Parallel al-

gorithms and architectures, pages 134–143, New York, NY, USA, 2001. ACM. ISBN 1-58113-409-6. doi:

http://doi.acm.org/10.1145/378580.378611.

[17] C. Wang, H.-S. Kim, Y. Wu, and V. Ying. Compiler-managed software-based redundant multi-threading for

transient fault detection. In CGO ’07: Proceedings of the International Symposium on Code Generation and

Optimization, pages 244–258, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2764-7. doi:

http://dx.doi.org/10.1109/CGO.2007.7.

19

