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Abstract
Real-time object detection is crucial in autonomous driving. To avoid catastrophic accidents, an
autonomous car should detect objects with multiple cameras and make decisions within a certain time
limit. Object detection systems can meet the real-time constraint by dynamically downsampling input
images to proper scales according to their time budget. However, simply applying the same scale to
all the images from multiple cameras can cause unnecessary accuracy loss because downsampling
can incur a significant accuracy loss for some images.

To reduce the accuracy loss while meeting the real-time constraint, this work proposes RTScale, a
new adaptive real-time image scaling scheme that applies different scales to different images reflecting
their sensitivities to the scaling and time budget. RTScale infers the sensitivities of multiple images
from multiple cameras and determines an appropriate image scale for each image considering the
real-time constraint. This work evaluates object detection accuracy and latency with RTScale for
two driving datasets. The evaluation results show that RTScale can meet real-time constraints with
minimal accuracy loss.
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1 Introduction

Real-time object detection in autonomous driving is crucial to avoid severe accidents. Au-
tonomous cars have multiple cameras around their bodies [39] and use the cameras to detect
objects on the road. Based on the object detection results, autonomous cars make decisions
on how to control their braking system and steer their wheel. Since object detection provides
essential visual information for autonomous cars, object detection must finish on time to
make timely decisions. If autonomous cars fail to make decisions on time, they may hit
pedestrians or other cars. Therefore, autonomous cars should detect objects on the road
timely and accurately.
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Recent advances in deep neural networks (DNNs) have brought real-time object detection
into reality. With tens or hundreds of neural network layers, object detection networks
predict regions on the input image (i.e., bounding boxes) that are likely to contain an object,
and classify their object categories. In general, we call a whole end-to-end object detection
network, including bounding box prediction and classification as an object detector.

Prior work [14, 13, 34, 17, 32, 36, 35, 6, 44] has proposed DNN architectures for object
detection. Especially, one-stage object detectors such as SSD [32] and YOLO [34] enable
fast and accurate object detection by integrating bounding box prediction and classification.
For example, YOLO (You Only Look Once) achieves up to 45 frames per second with high
accuracy [34]. Therefore, open-source autonomous driving platforms such as Autoware [24, 25]
and Apollo [1] use YOLO-based networks for object detection.

Aside from designing a novel DNN architecture, various optimization techniques are
available to enhance the detection speed of existing object detectors. One of the most popular
approaches is model compression [16, 15, 28, 10], which reduces the computational cost by
pruning parameters or using lower-precision numerics. However, the model compression
techniques require fine-tuning the target network to minimize accuracy loss, so they could
hardly reflect time-varying real-time constraints. Another approach is dynamic image
scaling [8, 7], which can reduce the computational cost by dynamically downsampling input
images. By adjusting the image size according to the time budget, dynamic image scaling
can help satisfy dynamically changing real-time constraints.

However, simply applying dynamic image scaling to object detection systems can cause
unnecessary accuracy loss. With the state-of-the-art object detectors [6], we observe that
each image has a different sensitivity to image scaling. Whereas image downsampling causes
significant accuracy loss for some images, it barely causes accuracy loss for the other images.
If an image only contains objects that are easy to detect even at a low scale, the image
tends to be less sensitive to downsampling. Therefore, to reduce accuracy loss in image
downsampling, it is necessary to consider the sensitivity in determining an appropriate scale
for each image.

This work proposes RTScale, a new sensitivity-aware adaptive image scaling scheme for
real-time object detection, which applies different scales to different images reflecting their
sensitivities to image scaling and time budget. RTScale extends an existing object detector
with a new scale sensitivity inference module and minimizes its overhead by reusing image
features from the object detector. While offline, RTScale trains the sensitivity inference
module to dynamically infer the impact of image scaling on the accuracy. While online,
RTScale infers the scale sensitivities for multiple images from multiple cameras with the
trained module, and determines appropriate image scales for the images considering the
real-time constraint.

This work evaluates object detection accuracy and latency with two driving datasets:
KITTI MOT [12] and BDD100K MOT [43]. This work implements RTScale on top of the
state-of-the-art object detection framework [11]. The evaluation results show that RTScale
can infer the sensitivity of images with low overhead and meet real-time constraints with
minimal accuracy loss compared with another adaptive scaling scheme.

The contributions of this work are:
Sensitivity-aware adaptive image scaling scheme for real-time object detection
Sensitivity inference module which infers the scale sensitivity of an image based on its
features
Evaluation of the proposed approach with two real-world driving datasets
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Figure 1 Autonomous driving and perception pipeline.

2 Background and Motivation

2.1 Autonomous Driving and Object Detection

In general, autonomous driving consists of four primary jobs: perception, localization, way
planning, and vehicle control. Autonomous driving systems first perceive their surrounding
environment with cameras and sensors. At the same time, autonomous driving systems
localize their locations using high-definition maps and sensors. Based on the perception and
localization results, autonomous driving systems plan how to reach the destination avoiding
obstacles on the road. Finally, autonomous driving systems determine how to control the
vehicle according to the plan. Figure 1a briefly illustrates the autonomous driving pipeline.

Among the four primary jobs, perception plays an essential role in providing safe au-
tonomous driving. Perception offers visual information on the road, such as whether pedestri-
ans are near and how many cars are on the road. In practice, since high-definition maps only
provide static information of the road, such as the locations of traffic lights, autonomous
cars cannot solely rely on high-definition maps for safe autonomous driving. Through the
perception process, autonomous cars can detect dynamic obstacles on the road and make the
right decisions on their next movements. If autonomous cars cannot perceive the surrounding
environment in real time, autonomous cars would fail to avoid obstacles on the road.

For perception, autonomous driving systems should process multiple camera images in
practice. According to Tesla Model S owner’s manual [39], Tesla Model S cars use eight
cameras for autonomous driving: one camera above the rear license plate, two cameras on
each door pillar, two cameras on each front fender, and three cameras on the wind shield.
According to prior work [29, 9], autonomous driving systems should finish the end-to-end
processing within 100 ms. Therefore, autonomous driving systems should process all the
images from multiple cameras within less than 100 ms.

Typically, autonomous driving systems implement perception with various computer
vision algorithms such as object detection and object tracking. Figure 1b summarizes
the perception pipeline process of Autoware [24, 25], one of the most popular open-source
autonomous driving systems. When the system receives the images and point clouds from
cameras and LIDAR, the system detects objects with the images and the point clouds. Then,
the system fuses the objects from the images with the objects from the point clouds. Next,
the system applies object tracking and motion prediction algorithms to the fused objects.
Finally, the system obtains a cost map for way planning, which indicates the drivable area
around the autonomous car.

In the perception process, object detection becomes the performance bottleneck incurring
the most computational overhead. Figure 2 shows the profiling result of each task in the
perception pipeline. For profiling, this work instruments time measuring code into the

ECRTS 2022
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Figure 2 Latency profile of tasks in the perception pipeline in Figure 1b. (416, 416) image scale
is used in object detection. Note that the y-axis is logarithmic.

Autoware perception module [2]. Note that this work only measures the latency of inference,
excluding queuing delay and communication time. In the graph, each error bar indicates
the maximum and minimum latency of each task. The graph shows that (vision) object
detection takes 4 ms while the other tasks take less than 1 ms on average. Therefore, the
profiling result demonstrates that object detection takes the longest time among the different
tasks in the perception pipeline.

2.2 Existing Object Detection Networks

In recent years, deep neural networks (DNNs) have remarkably enhanced both speed and
accuracy of object detection. Figure 3a briefly describes the general structure of object
detectors. An ordinary object detector comprises four parts: input, backbone, neck, and
head [6]. The input part takes an image as an input and preprocesses the image. The
backbone part contains a deep convolutional network such as ResNet [18] to extract the
features of the input image. The neck part typically contains a small network that collects
the features from different backbone stages such as FPN [30]. Finally, the head part predicts
the location and category of objects.

There are two primary types of object detection networks: two-stage networks (e.g.,
R-CNN series networks [14, 13, 36, 17]) and one-stage networks (e.g., YOLO and SSD series
networks [34, 35, 6, 32]). The major difference between two-stage and one-stage networks
is on whether bounding box prediction and classification are separate or not. In the head
part, two-stage networks find bounding boxes first and then classify objects in the bounding
boxes. On the other hand, one stage networks predict bounding boxes and class probabilities
together.

In general, one-stage networks are more compact than two-stage networks. For example,
YOLO [34] with GoogLeNet [37] consists of 26 layers while Faster R-CNN with FPN [30] and
ResNet-50 [18] consists of 213 layers in total. Since one-stage networks are more compact and
faster than two-stage networks, most autonomous driving systems adopt one-stage networks
like YOLO and SSD. For example, Autoware [24], a popular open-source autonomous driving
system, allows to use either YOLO or SSD for object detection. Another open-source system,
Apollo [1] also uses Apollo-OD for object detection which originates from YOLO networks.
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Figure 3 General architecture of existing object detectors and computational cost and accuracy
of an existing object detector [6] with different image scales.

2.3 Dynamic Image Scaling
Dynamic image scaling is one of the optimization techniques that can accelerate object
detection. It can enhance object detection speed by reducing the scale of the input image
dynamically. Figure 3 shows how the computational cost changes as the image size changes
on top of the existing deep learning framework [11]. Note that we downsample the input
image to have the widths on the x-axis. In the graph, BFLOPS indicates the number of
floating-point operations in billions. The graph shows that the computational cost decreases
almost linearly as the image size decreases.

However, downsampling an image often incurs accuracy loss. Figure 3 also shows how
the accuracy changes as the image size changes for the KITTI MOT dataset [12]. Here, we
use mean average precision with IoU threshold = 0.5 (mAP50) as the accuracy metric, which
is commonly used to evaluate object detectors. The graph shows that the accuracy of the
object detector tends to decrease as the image size decreases.

The interesting observation is that each image has a different sensitivity to image scaling
in terms of accuracy. In other words, some images barely lose accuracy in downsampling while
other images do not. In this work, sensitivity indicates how much image downsampling affects
object detection accuracy for an image. If an image is highly sensitive to downsampling, it
implies that the image would lose accuracy a lot in downsampling. This work will formally
define the sensitivity in Section 4.

Figure 4a shows how the accuracy for each image sequence changes as the image size
changes for the KITTI MOT dataset. The graph shows that some image sequence (S18) loses
almost no point, but another image sequence (S17) loses 9.95 points at the minimum scale.
Therefore, this work considers the images in S17 are more sensitive to image scaling than the
images in S18. Thus, it is necessary to consider the sensitivity to image downsampling to
reduce accuracy loss.

This work also observes that the sensitivity of an image differs according to the features
of the image. Figure 4b is the collection of the sample images from the KITTI MOT dataset.
The first image from S16 seems more complicated than the second image from S20. Whereas
the first image contains objects that are difficult to detect (e.g., pedestrians on the road),
the second image only contains simple objects (e.g., cars on the road). The difference may
result in different sensitivities of S16 and S20. Since S16 has more complicated images than
S20, S16 shows higher sensitivity than S20 as Figure 4a shows. Therefore, as the features of
an image affect its sensitivity, we can infer the sensitivity based on the image.

Prior work [7] designs a dynamic image scaling scheme to enhance the accuracy of object
detection, but the approach is not aware of real-time constraints nor sensitivity. It only
predicts an optimal scale for a given image from a single image stream regardless of real-time
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Figure 4 Object detection accuracy with different image scales for each image sequence in the
KITTI MOT validation dataset.

constraints. The approach cannot find the optimal scales for multiple image streams that
respect the time constraint. Therefore, the existing approach is not suitable for real-time
object detection with multiple image streams.

This work proposes RTScale, which enables real-time object detection with a new adaptive
image scaling scheme considering the scale sensitivity of multiple input images. RTScale
predicts the sensitivity of each image and determines the appropriate scales of images based
on real-time constraints and sensitivities. In this way, RTScale can reduce accuracy loss in
image downsampling while satisfying real-time constraints.

3 Problem Statement

When an autonomous car drives, the car receives N images from its N cameras in a fixed
interval. When the images arrive, the object detector processes the images with M processing
units and makes decisions based on the results. Let Ii,j denote the image frame of the j-th
camera at the i-th interval. Then, at the i-th interval, the object detector conducts object
detection tasks τi,1, ..., τi,N for Ii,1, ..., Ii,N . To make a timely decision, the object detector
must finish processing the N images within deadline Di at each interval. Note that the
relative deadline can differ across intervals depending on dynamic execution environment.

Before processing the images, the scheduler determines the scales of the images and
schedules the object detection tasks for the images. In this paper, we define an image
scale as (w, h) where w and h are the width and height of the image. The object detector
maintains the set of scales S and chooses an appropriate scale from the set for each image.
In other words, at the i-th interval, the scheduler determines si,j as one of the scales in
S for j = 1, ..., N where si,j denotes the image scale of Ii,j . The reason for assuming the
predefined set of scales is that handling arbitrary image scales would incur considerable
resizing overhead in practice because the system needs to configure the network layers every
time if the input shape is arbitrary.

This work formulates the problem as follows.
Problem Statement. The problem is to find the optimal scales of input images, {si,j}j∈[1,N ],

and schedule the object detection tasks for the images, {τi,j}j∈[1,N ], at each interval i

while satisfying the following constraint.
Deadline Constraint. The object detection tasks for the images finish before the deadline,

i.e., for each j = 1, ..., N ,

fi,j ≤ ri,j + Di

where ri,j and fi,j are the release time and completion time of τi,j , respectively.
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Table 1 Notation for the problem.

No. Description No. Description

N Number of cameras si,j Scale of Ii,j for processing (si,j ∈ S)
M Number of processing units τi,j Object detection task for Ii,j

S Set of scales to choose from ri,j Release time of τi,j

Di Relative deadline at the i-th interval fi,j Completion time of τi,j

Ii,j The j-th image at the i-th interval ρi,j Scale sensitivity of Ii,j

T [k] Latency of processing an image at S[k]

The ultimate goal of this work is to maximize object detection accuracy while satisfying
the deadline constraint. If we only consider the deadline constraint, forcing a very low scale
to the images could be a solution. However, it is not desirable because aggressive image
downsampling can cause a huge accuracy loss. Since each image has a different sensitivity to
image scaling as shown in Section 2, it is essential to minimize accuracy loss by considering
the sensitivity.

This work uses four assumptions for the problem: (i) The frame interval is longer than
or equal to the relative deadline. (ii) The worst-case execution time of processing an image
at a scale is given. Based on prior work [5, 20, 21, 19], it is possible to estimate the worst-
case execution time of an object detector. Especially, [19] presents a layer-level worst-case
execution time model for general neural networks. Therefore, we can obtain the worst-case
execution time of the target object detector by combining the estimation models of its
network layers. (iii) Every image is equally important in terms of autonomous driving
as in Autoware [24]. In other words, each image provides equally meaningful information
for autonomous driving. (iv) The time to schedule the object detection tasks is negligible
compared with the time to detect objects in images. To justify the fourth assumption, we
measure the scheduling overhead in the experiment and observe that scheduling takes less
than 10−5% of the total execution time as shown in Section 5.2.4.

4 Design

While most existing object detectors process images at a fixed scale, RTScale provides
sensitivity-aware adaptive image scaling for real-time object detection. Figure 5 briefly illus-
trates the overall object detection process with RTScale. RTScale extends an existing object
detector with a new lightweight sensitivity inference module that infers the scale sensitivity
of an input image. Since the sensitivity inference module reuses the features extracted by
the object detector, the module can predict scale sensitivity with a few convolution layers
only. While offline, RTScale trains the sensitivity inference module with the ground-truth
scale sensitivities of training datasets. While online, RTScale determines the scales of the
next images based on the real-time constraints and the sensitivity prediction results of the
current images.

In this paper, we assume a YOLO-series object detector [6] as a baseline object detector
because it is one of the most popular object detectors in open-source autonomous driving
platforms [24, 25, 1]. However, note that the proposed method can apply to any object
detector as well because it is based on the common characteristics of ordinary existing object
detectors.

ECRTS 2022
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Figure 5 Overall object detection process with RTScale.

4.1 Scale Sensitivity Inference
This work defines scale sensitivity of an image ρ as the ratio of the accuracy obtained at the
maximum scale to the accuracy obtained at the minimum scale, i.e.,

ρ = A[smax]
A[smin] (1)

where A[s] indicates the object detection accuracy of the image when detecting objects at a
scale s, and smax and smin are the maximum and minimum scales in S, respectively.

The meaning of scale sensitivity is the accuracy loss ratio at a minimum scale. If an
image loses accuracy a lot at a minimum scale, the image will have a high scale sensitivity.
On the other hand, if an image loses little accuracy at a minimum scale, the image will have
a low scale sensitivity. It is possible for a scale sensitivity to be smaller than one because
object detectors sometimes can detect objects better at a lower scale. For example, if an
image contains a very large object like a train, it may be better to process the image at a
lower scale [7].

The scale sensitivity definition presupposes a monotonic relationship between image scale
and object detection accuracy. This work has tried different metrics for the sensitivity to
reflect the non-monotonic relationship between image scale and object detection accuracy as
shown in Figure 4a. However, the sensitivity inference problem becomes too complex for
the inference module to be trained. To simplify the sensitivity inference module, this work
assumes that image scale and object detection are in a monotonic relationship.

Network Extension. This work extends an existing object detector to infer the scale
sensitivity of an image along with bounding box prediction and classification. This work
designs the scale sensitivity inference module to exploit the rich features from the existing
object detector for scale sensitivity inference. As explained in Section 2, ordinary object
detectors have a backbone network to extract the features from an input image and use the
features to infer bounding box locations and categories. Since the sensitivity inference module
also needs distinct features from the same input image, this work reduces the complexity of
the sensitivity inference module by sharing the feature maps from the backbone network.

Table 2 describes the detailed architecture of the sensitivity inference module. The module
applies two pairs of 3 × 3 and 1 × 1 convolution layers with the Leaky ReLU activation
function [33] to the feature maps from the backbone network. Next, the module applies
(global) average pooling to the output feature maps and obtains 512 features per image. Here,
the global average pooling enables the module to get the same size of features for different
image scales. Then, the module obtains the final sensitivity prediction by applying a dense
layer with the linear activation function.
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Table 2 The architecture of sensitivity inference module (Input: Feature maps from the backbone
network of which shape is (N, 1024, H, W ), Output: Normalized scale sensitivity).

Type Kernel Padding Activation Output Dim.

Convolution 3× 3 1 Leaky (N, 512, H, W )
Convolution 1× 1 0 Leaky (N, 512, H, W )
Convolution 3× 3 1 Leaky (N, 512, H, W )
Convolution 1× 1 0 Leaky (N, 512, H, W )
Average pooling Global - - (N, 512, 1, 1)
Dense - - Linear (N)

Ground-truth Label Generation. To train the scale sensitivity module, this work calculates
the ground-truth sensitivities of the images from train datasets. For the minimum and
maximum scales in S, this work records the object detection accuracy of the baseline object
detector for each image in the train datasets. Then, this work calculates the ground-truth
sensitivity of each image using (1).

This work uses the F1 score as the accuracy metric for scale sensitivity calculation to
consider both precision and recall. Precision is insufficient to evaluate the accuracy for a
single image because precision may favor low-resolution images with a smaller number of valid
predictions (i.e., the total number of true positives and false positives of which confidence
scores are larger than a threshold). In general, the total number of valid predictions tends to
decrease as the image scale decreases. Thus, if there are few valid predictions of an image,
its precision becomes undesirably high. Therefore, it is necessary to consider recall also
to mitigate the problem. Note that mean average precision (mAP) is not applicable here
because it is an accuracy metric for an entire dataset, not for a single image.

A[s] = 2
1

pr[s] + 1
rc[s]

(2)

Equation 2 is the definition of the F1 score where pr[s] and rc[s] denote the precision
and recall of an image obtained at a scale s, respectively. In object detection, we regard a
bounding box prediction is true positive if the predicted bounding box overlaps with a true
bounding box with IoU > 0.5 and the predicted category is same as the category of the true
bounding box. Here, IoU is the abbreviation of “Intersection over Union”, which indicates
the ratio of the overlap area of two bounding boxes to the total area of two bounding boxes.

To facilitate deep learning, this work normalizes the ground-truth sensitivity values with
(3). In the equation, ρ̂min and ρ̂max indicate the minimum and maximum scale sensitivities,
respectively. Note that ρ̂min and ρ̂max depend on the train datasets. Figure 6 shows the
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Figure 6 Scale sensitivity distribution of each driving dataset.
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scale sensitivity distributions of two driving datasets, KITTI MOT [12] and BDD100K
MOT [43]. The graphs show that BDD100K MOT has a broader distribution of scale
sensitivity than KITTI MOT. Thus, this work uses a smaller ρ̂min and a larger ρ̂max for
BDD100K MOT compared with KITTI MOT. In inference, this work denormalizes the
predicted scale sensitivity for use in scheduling.

ρnorm = (ρ − ρ̂min)/(ρ̂max − ρ̂min) (3)

Training: This work regards scale sensitivity inference as a linear regression problem and
trains the sensitivity inference module using a smooth L1 loss function with the ground-truth
labels. Equation 4 is the definition of the loss function where y is the predicted sensitivity
and ρnorm is the normalized ground-truth sensitivity. This work accumulates the loss for
each image when the mini-batch size is larger than one.

L(y, ρnorm) =
{

0.5 × (y − ρnorm)2 if |y − ρnorm| < 1
|y − ρnorm| − 0.5 otherwise

(4)

4.2 Scheduling
The RTScale scheduler determines the scales of the next images considering both the real-
time constraint and the sensitivity prediction of the current images. It is based on the
assumption that two consecutive frames from the same image stream have similar image
features. That is, two consecutive images in the same image stream would have similar scale
sensitivities. We consider the assumption is reasonable because prior work on video object
detection [48, 49, 47, 46] is also based on the assumption.

The basic idea for determining the scales is to minimize the expected accuracy loss relative
to the accuracy obtained at the maximum scale. This work calculates the relative accuracy
loss of a scale with scale sensitivity. Let Q(k1, k2) be the ratio of the k2-th smallest scale
over the k1-th smallest scale in S. For example, Q(1, |S|) is the ratio of the maximum scale
over the minimum scale in S. According to the definition,

Q(1, |S|) = Πk∈[1,|S|−1]Q(k, k + 1)

Then, this work defines the expected accuracy gain of the k-th smallest scale relative to the
minimum scale as follows:

gain(k, ρ) = ρlogQ(1,|S|) Q(1,k) (5)

Here, if Q(1, 2) ≃ ... ≃ Q(|S| − 1, |S|), we can simplify (5) as follows:

gain(k, ρ) = ρ
k−1

|S|−1 (6)

Finally, we define the expected loss of the k-th smallest scale relative to the maximum
scale as follows:

loss(k, ρ) =
{

gain(|S|,ρ)
gain(k,ρ) = ρ

|S|−k
|S|−1 , if k ≥ 1

∞, otherwise
(7)

This work designs a scheduling algorithm that gradually finds the scale and schedule
of each image that meet the time constraint for M (identical) processing units. After
processing Ii,1, Ii,2, ..., Ii,N at the i-th interval, the object detector invokes the scheduler
with the sensitivity predictions of the images. The algorithm takes the set of sensitivities
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Algorithm 1 RTScale scheduling algorithm.
Input : Sensitivities of the previous frames ρ1, ..., ρN

Relative deadline D

Output : Schedule of the next frames SC

1 if ⌈N/M⌉ · T [1] > D then
2 Return with an error
3 end
4 SC ← initialize({ρj}j∈[1,N ])
5 while SC.makespan > D do
6 j∗ ← arg minj loss(SC[j].scale− 1, SC[j].sensitivity)
7 SC[j∗].scale← SC[j∗].scale− 1
8 SC.update(j∗)
9 end

10 SC.optimize()

Algorithm 2 initialize(ρ1, ρ2, ..., ρN ).
Input : Scale sensitivities ρ1, ..., ρN

Output : Initial schedule SC

1 for j ∈ [1, N ] do
2 SC[j].id← j

3 SC[j].sensitivity ← ρj

4 SC[j].scale← |S| // Maximum scale
5 end
6 SC ← Sort SC in descending order of sensitivity
7 W ← {0, 0, ..., 0} // Workload of each unit
8 for j ∈ [1, N ] do
9 p∗ ← j mod M

10 SC[j].proc← p∗

11 SC[j].track ←W

12 W [p∗]←W [p∗] + T [|S|]
13 end
14 SC.makespan← maxp∈[1,M ] W [p]

ρi,1, ρi,2, ..., ρi,N and the relative deadline for the next interval Di+1 as its inputs. Considering
both the sensitivities and the relative deadline, the algorithm determines the scales of the
next images si+1,1, si+1,2, ..., si+1,N and the assignment of processing units.

Algorithm 1 is the pseudo code of the RTScale scheduling algorithm. First, the algorithm
checks whether the given images are schedulable or not by comparing the minimum possible
makespan and the relative deadline (Line 1 to Line 3). After the test, the algorithm generates
an initial schedule setting all the image scales as the maximum scale (Line 4). Then, the
algorithm gradually lowers the scales until the makespan does not exceed the given relative
deadline (Line 5 to Line 9). At every iteration, the algorithm finds the scale with the
minimum expected loss, lowers the scale, and updates the schedule to reflect the change.
Note that the algorithm assumes that S is sorted in advance.

Algorithm 2 and Algorithm 3 show how to find the minimum makespan schedule in
detail. Since the minimum makespan scheduling problem is known as strongly NP-hard [40],
the algorithms are based on a 4⁄3 approximation algorithm which sorts the set of tasks in
descending order of latency and greedily assigns each task to the processing unit with the
minimum workload. Rather than calculating the entire minimum makespan schedule at
every iteration, this work optimizes the algorithms to incrementally update the minimum
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Algorithm 3 SC.update(j∗).

Input : Index of the target image j∗

1 W ← SC[j∗].track

2 for j ∈ [j∗, N ] do
3 p∗ ← arg minp W [p]
4 SC[j].proc← p∗

5 SC[j].track ←W

6 W [p∗]←W [p∗] + T [SC[j].scale]
7 end
8 SC.makespan← maxp∈[1,M ] W [p]

makespan schedule. After sorted once in initialization, the order of the tasks remains the
same as the main loop iterates. Therefore, the algorithms can simply update the necessary
part of the schedule only (Line 2 and Line 7 in Algorithm 3).

After determining the schedule, Algorithm 1 optimizes the schedule as finalization. Since
the algorithm reduces the scale of each image based on its expected accuracy loss, each
processing unit may have spare time until the deadline. Therefore, the algorithm checks the
amount of slack for each processing unit and increases the scale of each image if possible in
the descending order of scale sensitivity.

The underlying principle of the algorithm is to lower image scales to satisfy the deadline
constraint while minimizing its total accuracy loss. By reducing the scale of an image that
has the minimal accuracy loss until satisfying the time constraint, the algorithm will obtain
the maximal accuracy product of the scaled images that respects the time constraint.

The computation complexity of the scheduling algorithm is O(N2KM) where K = |S|.
In the algorithm, the main loop for determining the next scales dominates the computation
complexity of the algorithm. In the worst case that all images require the minimum scale, the
outer loop iterates N(K − 1) times, and the computation complexity of the update function
is O(NM). Therefore, the computation complexity of the algorithm is O(N2KM).

5 Evaluation

5.1 Experimental Setup
This work implements RTScale on top of the Darknet deep learning framework from prior
work [11]. This work extends the state-of-the-art object detector [6] with the scale inference
module in Section 4.1. Since the original object detector is supposed to use a single image
scale, this work modifies the deep learning framework to dynamically change the scales of
input images as the scheduler directs. Furthermore, this work enables the deep learning
framework to support multiple image streams and multiple processing units for inference.

To show the effectiveness of RTScale, this work compares different image scaling schemes
on top of the framework:

AvgScale: chooses the maximum scale for each processing unit that does not violate the
deadline constraint, i.e., choose the maximum scale such that Np · T [k] ≤ Di where Np

indicates the number of images assigned to the p-th processing unit.
RTScale-pred: chooses the scales using the proposed scheduling algorithm based on
scale sensitivity predictions.
RTScale-gt: chooses the scales using the proposed scheduling algorithm with ground-
truth scale sensitivities.
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This work evaluates the image scaling schemes with two driving datasets, KITTI MOT [12]
and BDD100K MOT [43]. The reason for using the multiple object tracking datasets is
that existing object detection datasets do not provide multiple streams of consecutive image
frames. Existing object detection datasets only provide key frames for training and testing.
Therefore, this work uses the multiple object tracking datasets for evaluation. Note that the
multiple object tracking datasets only consider movable objects such as cars and pedestrians,
unlike ordinary object detection datasets.

Since the KITTI MOT dataset does not contain a validation set, this work divides the
train set of the KITTI MOT dataset for training and validation. Among 21 image sequences
of the train set, this work uses 16 sequences for training and the other five sequences for
validation. In addition, this work supplements the small volume of the KITTI MOT train set
with the KITTI object detection dataset. In the case of BDD100K MOT, this work samples
one image frame every other five frames from the train set to avoid overfitting from having
too many similar images.

This work first trains the baseline object detector for each dataset with multiple image
scales. The framework dynamically scales the input images by randomly choosing a scaling
factor between [1/1.4, 1.4] every 10 iterations. This work uses pretrained network parameters
for the first 137 layers of the baseline object detector. This work uses 0.001 as the learning
rate for the datasets and divides the rate by 10 after 80% and 90% of the total iterations as
prior work [6].

After training the baseline object detector, this work trains the sensitivity inference
module for each dataset. This work generates ground-truth sensitivity labels for each dataset
and filters several outliers to facilitate deep learning. This work uses (0.6, 2.8) and (0.3, 4.0)
as (ρmin, ρmax) in (3) to normalize the ground-truth sensitivity values for KITTI MOT
and BDD100K MOT, respectively. For KITTI MOT, this work uses a larger learning rate
considering the small volume of the KITTI MOT train set. Similar to the baseline detector,
this work divides the learning rate by 10 after 80% and 90% of the total iterations.

For evaluation, this work generates three artificial image streams with the validation
images of each dataset. This work divides a set of image sequences into three image streams.
Each stream in KITTI MOT and BDD100K MOT has 693 and 11,329 images, respectively.
For evaluating with multiple processing units, this work further divides three image streams
from KITTI MOT into six image streams. Although each image stream includes real-world
road images, the image streams are not from the cameras on the same vehicle. It might not

Table 3 Datasets and training parameters.

Information KITTI MOT BDD100K MOT
Number of train images 12,900 55,616
Number of validation images 2,079 33,987
Original image size 1242× 375 1280× 720
Parameter KITTI MOT BDD100K MOT

Baseline
Number of iterations 16000 16000
Batch size 64 64
Learning rate 0.001 0.001

Module
Number of iterations 70000 70000
Batch size 2 2
Learning rate 0.001 0.0001

Image scales
1024× 288, 896× 256,
768× 224, 640× 192,

512× 160

768× 416, 704× 384,
640× 352, 576× 320,

512× 288
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(a) KITTI MOT (N = 3, M = 1).
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(b) BDD100K MOT (N = 3, M = 1).

Figure 7 Object detection accuracy and total latency with a single processing unit (N : Number
of image streams, M : Number of GPUs).

be ideal, but it is the best possible option because there is no available multi-camera driving
dataset. This work conducts experiments with two Intel(R) Xeon(R) Silver 4210 CPUs and
up to three NVIDIA GeForce RTX 2080 Ti GPUs using CUDA 10.0 and cuDNN 7.6.4.

5.2 Results

5.2.1 Accuracy and Latency
This work measures the accuracy and latency of the object detector for a given relative
deadline with different image scaling schemes. This work evaluates object detection accuracy
with the mean average precision metric with IoU threshold = 0.5 using the evaluation code of
the Darknet framework. In addition, this work measures the total latency for processing all
the images from image streams within an interval. This work determines relative deadlines
considering the worst-case object detection latency of processing an image at each scale.

Figure 7 shows the accuracy and latency of the object detector for KITTI MOT and
BDD100K MOT with one processing unit. In the figures, the rectangular bars indicate the
accuracy of the object detector and the error bars indicate the range of object detection
latency during all the intervals. For different relative deadlines, all the image scaling schemes
meet the deadline constraints because they always choose the appropriate set of scales that
would not violate the deadline constraint.

Overall, with the same relative deadline, RTScale-pred and RTScale-gt obtain better
accuracy than AvgScale. As shown in the graphs, RTScale-pred and RTScale-gt enhance
the object detection accuracy by 10.4 and 10.8 points at most. Since RTScale-pred and
RTScale-gt determine the scales of the images considering scale sensitivity, RTScale-pred and
RTScale-gt can reduce accuracy loss from image downsampling compared with AvgScale.

The amount of accuracy gain with RTScale tends to decrease as the relative deadline
increases. It is because the accuracy gap between two similar scales tends to be smaller for
the higher scales. In Figure 4a, the object detector obtains 5.48 more points for S17 with
the image width of 768 than the image width of 640. On the other hand, the accuracy gap
between the image widths of 1024 and 896 is only 0.83 points. The result implies that there
are less opportunities to enhance accuracy through adaptive image scaling when the higher
scales are available (i.e., when the relative deadline is large).

In general, RTScale-gt obtains better accuracy than RTScale-pred because RTScale-gt
uses ground-truth scale sensitivities in scheduling. Therefore, RTScale-gt can better predict
expected accuracy loss than RTScale-pred. In the experiment, RTScale-gt gains at most 1.8
more points in accuracy compared with RTScale-pred. Nevertheless, RTScale-pred performs
almost as good as RTScale-gt in the experiments.
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(a) KITTI MOT (N = 6, M = 2).
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(b) KITTI MOT (N = 6, M = 3).
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(c) BDD100K MOT (N = 6, M = 2).
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(d) BDD100K MOT (N = 6, M = 3).

Figure 8 Object detection accuracy and total latency with multiple processing units (N : Number
of image streams, M : Number of GPUs).

Figure 8 shows the accuracy and latency of the object detector for KITTI MOT and
BDD100K MOT with two and three processing units. RTScale assigns each task to a certain
processing unit regarding the scale sensitivity. For example, RTScale can have a processing
unit dedicated to a highly sensitive image. Thus, RTScale can better utilize the multiple
processing units to reduce accuracy loss than AvgScale. As shown in the graphs, RTScale-pred
and RTScale-gt enhance the object detection accuracy by 10.9 and 10.7 points at most with
the two processing units.

Interestingly, RTScale-pred outperforms RTScale-gt in some cases. It is because choosing
the maximum scale is not always the best, even for the images with scale sensitivity larger
than one. This work observes that detecting objects at a medium scale sometimes results in
the best accuracy. Since RTScale calculates the scale sensitivity regarding the maximum and
minimum scales only, RTScale sometimes fails to predict the expected accuracy loss correctly.
However, predicting the non-monotonic tendency of accuracy change is too complicated for
deep neural networks to learn. Therefore, RTScale only considers the monotonic tendency of
accuracy change.

Furthermore, RTScale may not perform to the best because the datasets only provide a
few frames per second. Although the object detector can process three images within 100
ms, the actual time interval between two consecutive images in the datasets is much longer.
It means that two images may not be similar to each other. It can hinder RTScale from
performing to the best because the scale sensitivities of the two images may not be similar
to each other, which is different from our assumption.

5.2.2 Dynamic Deadline Adaptation
This work evaluates how the object detector can well adapt to dynamically changing relative
deadline with the KITTI MOT dataset. This work randomly generates the sequence of
relative deadlines and provides a different relative deadline to the object detector at every
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Figure 10 Relative error distribution of scale sensitivity predictions.

interval. This work randomly chooses an integer within [50, 70] for a relative deadline. Here,
since each image stream of the KITTI MOT dataset contains 693 images, the total number
of intervals is 693, accordingly.

Figure 9 shows how the latency of the object detector changes according to the relative
deadline. In the figure, the red line indicates the relative deadline at each iteration, the grey
line indicates the latency of the object detector with AvgScale, and the blue line indicates
the latency of the object detector with RTScale-pred. Figure 9 also provides the accuracy of
the object detector with AvgScale and RTScale-pred.

The evaluation result shows that RTScale better adapts to the deadline compared with
AvgScale because RTScale applies different scales for the images. Although the two image
scaling schemes enable the object detector to meet the deadline constraint at every interval, the
latency with RTScale changes more smoothly according to the given deadline. Furthermore,
RTScale obtains 3.64 points higher object detection accuracy compared with AvgScale. The
result shows that RTScale can well adapt to the dynamic deadline while enhancing object
detection accuracy.

5.2.3 Scale Sensitivity Inference

This work also evaluates how accurately the scale sensitivity inference module can predict
scale sensitivity. This work calculates the relative errors of the predicted scale sensitivity
with the ground-truth scale sensitivity for the validation set. Figure 10a and Figure 10b are
the histograms that show the distributions of relative errors for KITTI MOT and BDD100K
MOT. On average, the scale sensitivity module obtains 17% and 21% relative errors for
KITTI MOT and BDD100K MOT, respectively.
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Figure 11 Sample object detection results with the image scales used in detection (TP: True
Positive, FP: False Positive).

Figure 7 clearly shows the consequence of inaccurate scale sensitivity inference. Since
the sensitivity module relatively performs worse for BDD100K MOT than KITTI MOT, the
gap between RTScale-pred and RTScale-gt is larger for BDD100K MOT. While the largest
gap between RTScale-pred and RTScale-gt is 0.5 points for KITTI MOT, the largest gap
between RTScale-pred and RTScale-gt is 1.8 points for BDD100K MOT. It implies that the
errors in scale sensitivity predictions can degrade accuracy.

However, the relative errors of scale sensitivity predictions do not directly cause accuracy
degradation because the scheduler determines the scales of images by comparing the expected
accuracy losses of the images. That is, the scheduler considers the relative differences in
their sensitivities. Therefore, if the predicted sensitivities of the images show a similar
difference to the ground-truth sensitivities, RTScale-pred still can find an effective solution as
RTScale-gt. As a result, RTScale-pred could obtain a comparable accuracy with RTScale-gt
in the experiments.

This work also visualizes the object detection results of sample images from the KITTI
MOT to show how the quality of object detection results differs with image scales. Figure 11
shows the object detection results of the same images with different relative deadlines. In
the figure, each image includes the image scale used in object detection. For readability,
this work resizes the images to have the same size. In addition, the color of a bounding box
indicates the category of the object. Overall, the object detection results with a high scale
have more true positives than the results with a lower scale. For example, in the case of the
middle image in the figure, the object detector fails to detect a hidden car on the right side
at the lowest scale.

5.2.4 Memory and Scheduling Overhead

This work measures the system-level memory and scheduling overhead compared with the
original object detection system. RTScale requires extra memory because the system needs
to store the parameters for the scale sensitivity inference module and maintain the multiple
descriptors for each convolution layer to avoid the resizing overhead. However, the total
memory overhead is at most 2.10 % only compared with the amount of memory that the
original system uses. Furthermore, RTScale incurs little scheduling overhead with the small
N and M compared with the total latency of processing images.
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Table 4 Memory and scheduling overhead of RTScale.

Configuration N = 3, M = 1 N = 6, M = 2 N = 6, M = 3
Memory Overhead 0.32 % 1.54 % 2.10 %

Scheduling Overhead < 10−5 % < 10−5 % < 10−5 %

6 Related Work

6.1 Real-time Object Detection
Previous work [22, 19, 38] has studied real-time object detection to finish object detection
within a given deadline.

Jang et al. [22] design a real-time object detector for autonomous driving considering
the end-to-end delay of object detection. Jang et al. observe that existing object detectors
suffer from severe time lags, even excluding inference time. Jang et al. address that the time
lags come from queuing delay, pipeline imbalance, and resource contention (especially on
integrated CPU-GPU platforms). To reduce the end-to-end delay of an object detector, Jang
et al. propose three optimization techniques: on-demand capture, zero-slack pipeline, and
contention-free pipeline. Since the prior work targets to optimize end-to-end delay rather
than inference time, this work can apply RTScale to R-TOD to further optimize end-to-end
object detection latency, including inference time.

S3DNN [45] is a system solution for executing multiple DNN workloads in real time.
S3DNN guarantees real-time performance with two main techniques: (i) system-level data
fusion and (ii) supervised streaming and scheduling. First, S3DNN fuses multiple DNN
workloads into one DNN instance to enhance resource utilization within the memory limit.
Second, S3DNN enables streaming processing of multiple GPU kernels from different DNN
instances and schedules the kernels considering concurrency benefits. The main objective
of S3DNN is to enhance the throughput of DNN workloads, which might degrade pipeline
efficiency in autonomous driving. Nevertheless, this work can employ its techniques to
optimize throughput because the techniques are orthogonal to the approach of this work.

Heo et al. [19] propose multi-path neural networks that can adapt to time-varying time
constraints by dynamically changing their execution paths. According to the time constraints,
the multi-path neural network can skip layers, generate a different number of region proposals,
and switch to another branch. Heo et al. also provide the worst-case execution time model
for deep neural networks considering the worst-case memory contention. Although the prior
work shows that the multi-path neural network can well adapt to the time constraints, it
requires designing an elaborate multi-path neural network to minimize accuracy loss.

IntPred [38] is an object detection scheme that reduces computational cost with an
interpolation prediction. Since objects move slowly across consecutive frames, IntPred
only runs an object detector for a partial set of image frames. Based on the interpolation
prediction, IntPred adjusts the location of the objects for subsequent image frames. By
avoiding processing every image frame, IntPred can reduce object detection time and power
consumption. However, it can be risky to skip image frames because objects can suddenly
appear in the skipped frames, especially in the street images that change dynamically.

6.2 Real-time DNN Inference
Rather than focusing on object detection, other work [42, 26, 31, 27, 23, 41, 3, 4] proposes
general real-time DNN frameworks.
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Recent work [42, 26, 31] has proposed to use the concept of early exiting for real-time
DNN inference, which allows a neural network to generate the output early. Yao et al. [42]
suggest controlling the number of network stages with early exiting to provide intelligent
real-time edge services. Liu et al. [31] extend the previous work [42] to consider the criticality
of data within a scene. Kim et al. [26] propose a hierarchical neural network that can provide
abstract classifications before final concrete classification. Similar to RTScale, the recent
work exploits the architecture of existing networks to provide real-time inference. However,
the work requires designing a network with multiple exits in advance for dynamic latency
adjustment. Therefore, the network cannot easily adapt to different run-time environments.

Lee et al. [27] introduce SubFlow, which enables real-time inference and training by
dynamically pruning neurons. SubFlow dynamically generates subgraphs according to
dynamic time constraints. By ranking neurons of each layer considering their importance,
SubFlow can find the best subgraph that satisfies a given time constraint. Lee et al. propose
time-bound inference and training of convolutional and fully-connected layers. Since its
dynamic model compression approach is orthogonal to adaptive image scaling, RTScale is
applicable in combination with SubFlow. However, SubFlow only supports convolution and
fully-connected layers for now, while most object detectors include other types of layers.

DART [41] is a pipeline-based DNN scheduling framework, which provides a deterministic
response time for processing multiple DNN models. DART minimizes the response time
using data-level parallelism, allocating tasks into multiple CPUs and GPUs. DART utilizes
two types of data-level parallelism, inter-node pipelining and intra-node data parallelism, to
overcome the resource limitation of local accelerators and exploit multiple processing units
efficiently. DART provides a time-predictable DNN execution for multiple processing units.

DeepRT [23] and PredJoule [4] utilize DVFS (Dynamic Voltage-Frequency Scaling) to
satisfy time constraints and optimize energy consumption in neural network execution.
They dynamically change the DVFS configuration according to time constraints and energy
consumption. DeepRT also employs dynamic model compression to reduce the computational
cost of executing deep neural networks on mobile devices. PredJoule finds the optimal DVFS
configuration considering the performance and energy characteristics of different layers.

ApNet [3] is a timing-predictable runtime system for DNN workloads, which applies
approximation to neural networks to satisfy real-time requirements. ApNet chooses an
appropriate approximation strategy for each layer based on how the resource utilization of
the target device changes with different approximation strategies. In addition, ApNet designs
a runtime system that can enhance resource sharing and concurrency via approximation.

Although the existing approaches [23, 4, 3] for real-time DNN inference allow each
inference task to finish within a deadline, the approaches either require the system support
or incur a relatively large accuracy loss.

7 Conclusion

This work proposes RTScale, which enables real-time object detection through adaptive
image scaling while minimizing accuracy loss. Based on the observation that each image has
a different sensitivity to image scaling with regard to object detection accuracy, RTScale
finds appropriate scales for images from multiple streams considering both scale sensitivity
and real-time constraint. RTScale enables existing object detectors to infer the sensitivity
by adding a few layers for sensitivity inference. This work evaluates RTScale with other
image scaling schemes with two popular driving datasets. The evaluation results show that
RTScale can meet real-time constraints with minimal accuracy loss.
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