
Fine-Grained Pipeline Parallelization
for Network Function Programs

Seungbin Song
Yonsei University

Seoul, Republic of Korea
seungbin@yonsei.ac.kr

Heelim Choi
Yonsei University

Seoul, Republic of Korea
heelim@yonsei.ac.kr

Hanjun Kim
Yonsei University

Seoul, Republic of Korea
hanjun@yonsei.ac.kr

Abstract—Network programming languages enable program-
mers to implement new network functions on various hardware
and software stacks in the domain of Software Defined Net-
working (SDN). Although the languages extend the flexibility of
network devices, existing compilers do not fully optimize the
network programs due to their coarse-grained parallelization
methods. The compilers consider each packet processing table
that consists of match and action functions as a unit of tasks
and parallelize the programs without decomposing match and
action functions. This work proposes a new fine-grained pipeline
parallelization compiler for network programming languages,
named PSDN. First, the PSDN compiler decouples match and
action functions from packet processing tables and analyzes
dependencies among the matches and actions. While respecting
the dependencies, the compiler efficiently schedules each match
and action function into a pipeline with clock cycle estimation
and fuses functions to reduce synchronization overheads. This
work implements the PSDN compiler that translates a P4
network program to a Xilinx PX program, which is synthesizable
to NetFPGA-SUME hardware. The proposed compiler reduces
packet processing latency by 12.1% and utilization by 3.5%
compared to previous work.

Index Terms—Pipeline Scheduling, Compilers, Networks

I. INTRODUCTION

Recent network programming languages allow programmers
to develop a network service on a network switch with multiple
subdivided functional units. The OpenFlow specification [1]
initially introduces a network switch architecture based on
the multiple functional units, and the P4 programming lan-
guage [2] introduces a programming model of the multiple
functional units. The P4 language represents each functional
unit as a packet processing table that consists of match and
action functions. The match function compares packet header
values with rules specified in a control plane. The action
function modifies the packet header values or internal metadata
according to the match comparison result. For example, a
programmer can implement access control lists (ACLs), layer-
2 (Ethernet) switching, layer-3 (IP) routing, and equal-cost
multi-path (ECMP) routing as packet processing tables. The
network service providers implement these various packet
processing tables, combine them into a control flow, and
execute the programmed network service on CPUs [3]–[5],
FPGAs [6], or specialized packet processors [7]–[9].

Although the network programming languages like P4 [2]
extend the flexibility of network devices, existing compil-

ers [10]–[12] do not fully optimize the network programs.
Since a P4 program contains matches and actions that read
and update different packet header values, parts of the match
and action functions can be executed in parallel. However, the
compilers [10]–[12] consider each packet processing table as
a unit of tasks and parallelize the programs without decom-
posing match and action functions. The compilers preserve
data dependencies between tables in a coarse-grained manner
and map them into a physical pipeline of packet proces-
sors. Therefore, the compilers lose fine-grained parallelism
opportunities between match and action functions. To fully
exploit the parallelism opportunities, a network programming
compiler should disaggregate the packet processing tables into
match and action functions and carefully allocate the functions
instead of the tables into a pipeline.

This work proposes PSDN, a novel fine-grained pipeline
parallelization compiler for a network function program writ-
ten in the P4 language. The PSDN compiler consists of
four parts: table decomposition, dependency analysis, pipeline
scheduling, and code generation with function fusion opti-
mization. First, the compiler decomposes a packet processing
table into match and action functions and analyzes control
and data dependencies among them. Then, the PSDN compiler
estimates the processing latency of each function by reflecting
execution behaviors and efficiently allocates the functions in a
pipeline manner respecting the dependencies and the latency
estimation. Here, to reduce the pipeline length, the compiler
allocates independent functions into the same pipeline stage.
The PSDN compiler finally generates a program written in
PX language [13], which is synthesizable into FPGA-based
network switches [6]. To simplify the network switch hardware
generated from the PX program and reduce synchronization
overheads among functions, the PSDN compiler additionally
fuses concurrent functions in the same pipeline stage and
consecutive functions in a pipeline.

This work evaluates the PSDN compiler using seven P4
programs [14] and synthesizes the programs to the NetFPGA-
SUME board [6]. This work measures end-to-end packet
processing latency by HDL simulation and resource usage
of ALUs, registers, and memories by synthesizing the com-
piled program into the hardware. Compared to the previous
work [12], the PSDN compiler reduces packet processing
latency by 12.1% and resource utilization by 3.5%.

Controller/OS

Network Switch

Processing Rules
Rule1: 01:23:45:67:89:AB → Port1

Packet #1
dstAddr: 01:23:45:67:89:AB

Packet #1
Output Port: 1

Control Plane
Data Plane

Give Rules

Process Packet Headers/Metadata

Fig. 1. Structure of Software Defined Networking

The contributions of this paper are:
• a new fine-grained pipeline parallelization compiler that

transforms a P4 networking program into a PX program
for Xilinx SDNet,

• a fine-grained dependency analysis and a pipeline
scheduling scheme with clock cycle estimation,

• and a function fusion scheme that merges match and ac-
tion functions to reduce latency and resource utilization.

II. BACKGROUND & MOTIVATION

A. Software-Defined Networking

Software-Defined Networking (SDN) [15] decouples control
planes from data planes in network switches and enables con-
trollable and programmable network switches. Fig. 1 describes
a packet processing structure of SDN. In the control plane,
network service providers describe rules about how a network
switch processes packets depending on their packet headers
using the built-in functions. In the data plane, a network switch
receives packets and processes them according to rules defined
in the control plane. OpenFlow [1] provides APIs between the
data plane and the control plane, and ONOS [16] provides a
control platform.

Thanks to the introduction of data plane languages and
reconfigurable network switch architectures, the data plane
becomes programmable. Instead of using the built-in functions,
network service providers can program the switches to accept
newly-defined protocols or execute multiple network functions
in different protocols using data plane languages. One of the
popular data plane languages is P4 [2]. For example, in-band
Network Telemetry (INT) [17], load balancing [18], and in-
network computation [19] are implemented in the P4 language.

B. Structure of Data Plane Language

P4 [2] is a domain-specific language that describes packet
header processing. Although this work describes the P4 lan-
guage, the structure of other languages like Huawei’s Protocol-
Oblivious Forwarding [20], [21] is similar to the structure of
the P4 language. A data plane program consists of a parser,
a table pipeline, and a deparser. The parser accepts packets
and generates packet headers and metadata based on network
protocols. With the parsed packet headers and metadata, the
table pipeline modifies them based on the control plane rules.
Finally, the deparser packages all the information and emits
the modified packets.

Fig. 2 describes an example P4 pseudo program. This paper
excludes header, metadata, parser, and deparser definitions
to simplify the example program. A table pipeline contains

1 parser Parser(packet_in packet,
2 out headers hdr, inout metadata meta) {...}
3
4 control TablePipeline(inout headers hdr,
5 inout metadata meta) {
6 action set_output_port(port_t port) {
7 meta.dst_port = port;
8 }
9 table forward {

10 key = { hdr.ethernet.dstAddr: exact; }
11 actions = {
12 set_output_port;
13 NoAction;
14 }
15 default_action = NoAction;
16 }
17 action set_broadcast(port_t port) {
18 meta.dst_port = port;
19 }
20 table broadcast {
21 key = { meta.src_port: exact; }
22 actions = {
23 set_broadcast;
24 NoAction;
25 }
26 default_action = NoAction;
27 }
28 apply {
29 // forward based on destination Ethernet address
30 if (!forward.apply().hit) {
31 // miss, then broadcast
32 broadcast.apply();
33 }
34 }
35 }
36
37 control Deparser(packet_out packet, in headers hdr) {...}
38
39 Switch(Parser(), TablePipeline(), Deparser()) main;

Fig. 2. An example P4 program

action definitions, tables, and an apply function. An action
definition is a function that modifies packet headers (hdr) or
metadata (meta). Some actions require arguments as inputs
(e.g., set_output_port and set_broadcast), whose
actual values are given by the control plane. Besides, actions
modify packet headers or metadata directly or by using ex-
ternal functions. A table definition contains keys that contain
packet headers or metadata for match operations and actions
that invoke action definitions when the keys are matched. An
apply function is the main function that describes the control
flow of tables. The apply function can contain conditional
branches like if statements, but the P4 language does not
support loops or iterations. Therefore, the control flow of the
table pipeline is acyclic.

Fig. 3 describes a part of the P4 grammar about the table
pipeline. table_pipeline contains action functions, table
declarations, an apply function, and extern functions. The
extern functions are implemented outside of the program like
Verilog modules. The action function declarations and the
apply function consist of statements such as assignment, if,
and call statements. The table declaration consists of a list of
keys and action names declared in table_pipeline. The
keys contain the id of match variables and types of match.

table pipeline := control table pipeline name {
action decl list
table decl list
extern decl list
apply { stmt list; } }

action decl list := action decl list action decl
:= action decl

action decl := action name(args) { stmt list; }
table decl list := table decl list table decl

:= table decl
table decl := table table name {

key = { key list; }
actions = { action name list; } }

key list := key list; key
:= key

key := id : match type
match type := exact

:= ternary

:= lpm

id := packet header or metadata field
action name list := action name list; action name

:= action name
extern decl := extern extern name (args);

stmt list := stmt list; stmt
:= stmt

stmt := id = expr
:= if(expr) {stmt list}
:= if(expr) {stmt list} else {stmt list}
:= table name.apply()
:= extern name(expr list)

expr list := expr list, expr
:= expr

Fig. 3. The context-free grammar of a table pipeline in the P4 language

Fig. 4 shows the behavior of the table forward in
Fig. 2. In the P4 program in Fig. 2, the table forward
has Ethernet destination address (hdr.ethernet.dstAddr) with
the exact option in the key (line 10) and two actions
that invoke set_output_port and NoAction func-
tions (line 11-14). Given the Ethernet destination address
(01:23:45:67:89:AB) from network service providers in
the control plane, the network switch compares the Ethernet
destination address of a packet with the given value. If the
address is the same as a given value, the switch sets the desti-
nation port number (meta.dst port) as an argument (1) given
by the control plane (set_output_port); otherwise, the
switch passes the packet without modification (NoAction).

Although a data plane program consists of a parser, a table
pipeline, and a deparser, this work focuses on optimizing the
table pipeline because the data plane consumes most of its
execution time in the table pipeline. While the parser extracts
and the deparser packages the data, since the table pipeline
reads/writes packet header fields or metadata, the table pipeline
suffers from huge overheads. Furthermore, a recent publica-
tion [22] demonstrates that the latency of the table pipeline

Match: dstAddr

set_output_port
(port)

NoAction

Match value Selected action Arguments
01:23:45:67:89:AB set_output_port 1

- NoAction -

Table forward

Control Plane Rules

Packet #1 Packet #1

Packet #2 Packet #2

dstAddr port

hit

miss
port:1

Fig. 4. The execution of table forward

U(stmt) := { id | id ∈ expr }
D(stmt) := id

U(stmt list) := U(stmt list) ∪ (U(stmt) \ D(stmt list))
D(stmt list) := D(stmt list) ∪ D(stmt)

U(keys) := { id | id ∈ keys }
D(keys) := ∅

U(actions) := ∪stmt list∈action decl U(stmt list)
D(actions) := ∪stmt list∈action decl D(stmt list)

U(table) := U(keys) ∪ U(actions)
D(table) := D(actions)

Fig. 5. The use and def of a P4 table. U(n) is a set of use of n, and D(n) is
a set of def of n.

rapidly increases as the number of tables increases. Therefore,
this work focuses on optimizing the table pipeline to minimize
the packet processing latency of the programmable switch.

C. Limitation of Existing Compilers

Although P4 [2] extends the flexibility of network switches,
existing P4 compilers [10]–[12] do not fully optimize the
network programs because of the absence of fine-grained
dependency analysis. Bosshart et al. [7] and Jose et al. [11]
propose compilers that find data dependencies when a table
modifies a packet header field and a subsequent table uses
the field in its match (match dependency) or changes the field
in its action (action dependency). However, they only focus
on table-level data dependencies, so their pipeline scheduling
becomes coarse-grained, losing possible parallelism opportu-
nities among match and action operations.

The Table-level analysis considers a packet processing table
as a unit of dependency analysis, thus ignoring the details of
matches and actions. Fig. 5 shows the use and def of a table.
Although match keys and actions have their uses and defs,
and the existing compilers analyze the uses and defs of the
match keys and actions, they only exploit the uses and defs
in the table-granularity to find data dependencies. Therefore,
to fully exploit parallelism opportunities in a finer-granularity,
decoupling matches and actions from the tables is required in
data dependency analysis.

Although decomposing tables into match functions and
action functions is useful to find additional parallelism op-
portunities, the decomposition may increase computation and

:p4c compilerP4 program (.p4)

P4 IR

Table Decomposition
t1

t2
PSDN functions

t1.action

t1.match

t2.action

t2.matchif

frontend Dependency Analysis

PDG
Pipeline Scheduling

Cycle Estimation
Scheduling Algorithm

Function Fusion Code Generation

PX program (.sdnet)

:PSDN backend

SDNet compilerVivado & P4-NetFPGA
Verilog

program (.vp)
NetFPGA-SUME

action
(t1&if→t2)

t1.action

t1.match

t2.action

t2.match
if

t1.actiont1.match t2.action
t2.match

t1.match
t2.match

if

Fig. 6. Overall PSDN Compilation Process

area overheads of the synthesized hardware. Since the existing
compilers [7], [11] allocate tables into hardware pipeline
stages, their control flows are synthesized in a table-level
granularity. Moreover, since match and action functions are
synthesized together in one module, an optimization opportu-
nity exists across match and action functions. However, since
a fine-grained pipeline scheme that decomposes tables into
match and action functions can allocate the match and action
functions in the same table into different pipeline stages,
the number of pipeline stages can increase, and the control
flows become more complex. Since the increased pipeline
stages and the complex control flows can cause unnecessary
synchronization, the fine-grained pipeline scheme can increase
the overall execution time even if each pipeline stage can be
shorter. Therefore, reducing the number of pipeline stages and
simplifying the control flows by decomposing only profitable
tables are crucial for a P4 compiler to synthesize efficient
switch hardware.

III. PSDN COMPILER DESIGN & IMPLEMENTATION

This work proposes the PSDN compiler to reduce latency
and resource usage of network function programs. The com-
piler 1) decomposes packet processing tables into separated
match functions and action functions, and 2) generates a pro-
gram dependence graph, 3) efficiently allocates the functions
in a pipeline manner respecting the dependencies and the la-
tency estimation, and 4) finally generates a Xilinx PX program
after fusing concurrent action functions and concatenating
subsequent action functions.

A. Overview of Compilation Process

Fig. 6 describes an overview of the PSDN compiler. The
frontend of the PSDN compiler is the p4c open-source com-

if (!forward.apply().hit){
broadcast.apply();

}

f_result = forward.match();
forward.action(f_result);
if (!f_result.hit) {

b_result = broadcast.match();
broadcast.action(b_result);

}

Fig. 7. A table decomposition example of table pipeline in Line 28-34 of
Fig. 2. The PSDN compiler decomposes the apply function into match and
action functions.

piler [23] that generates P4 intermediate representation (IR).
Based on P4 IR, the PSDN compiler decomposes P4 tables
into match functions and action functions (Section III-B).
The PSDN compiler analyzes data and control dependencies
among the functions and combines them into a program
dependence graph (PDG) with pre-fetching the read-only
functions (Section III-C). After the PDG is generated, the
PSDN compiler performs cycle estimation and schedules the
order of the functions into a pipeline (Section III-D). Here, the
PSDN compiler allocates independent functions into the same
pipeline stage to reduce the length of the pipeline. Finally,
the PSDN compiler performs a function fusion scheme that
merges adjacent action functions (Section III-E).

The PSDN compiler is in charge of translating a P4 IR to a
PX program and optimizing the program. For the other parts of
the compilation process, this work employs the p4c compiler
as a frontend compiler and the SDNet compiler [24] as a
backend compiler. This work implements the PSDN compiler
on the top of p4c compiler, developing backend passes to
translate P4 IR to an optimized PX program. After the PSDN
compiler generates the optimized PX program, the SDNet
compiler translates the program to a protected (encrypted)-
Verilog program, which is synthesizable into FPGA hardware.
Because the SDNet compiler is a commercial compiler and
hides the translation details, this work cannot perform register
transfer-level (RTL) optimizations. At the time of writing,
this work follows the workflow of P4-NetFPGA-SUME [14]
that includes the SDNet compiler. Still, we also consider
developing an end-to-end compiler as future work to perform
high-level synthesis and lift the pipeline limitations.

This work synthesizes the Verilog programs using Vi-
vado 2018.2 and tests the programs on the NetFPGA-SUME
board [6]. The evaluation infrastructure of this work is de-
scribed in Section IV.

B. Table Decomposition

A table decomposition scheme of the PSDN compiler
decomposes match functions and action functions of P4
tables. Fig. 7 shows table decomposition of table pipeline
(Line 28-34) in Fig. 2. The PSDN compiler first de-
composes forward.apply() to forward.match()
and forward.action(). The transformed code invokes
forward.match() and saves its result in f_result.
forward.action() performs actions with f_result as
the argument. if statement needs the hit or miss result of
the table forward, so the condition argument of the if

1 typedef enum { exact, lpm, ternary } LookupType;
2 typedef struct { bool hit; int action_id;
3 int* args; } Result;
4
5 LookupType f_type = LookupType.exact;
6 int f_keys[1] = [hdr.ethernet.dstAddr];
7
8 Result ForwardTable::match() {
9 Result result = PERFORM_MATCH(f_type, f_keys);

10 return result;
11 }
12
13 void ForwardTable::action(Result result) {
14 if(result.hit) {
15 switch(result.action_id){
16 //case 1: set_output_port(), default: NoAction()
17 case 1: meta.dst_port = result.args[0]; break;
18 default: break;
19 }
20 }
21 }

Fig. 8. A match function and an action function of Table forward of Fig. 2

f_result = forward.match();
forward.action(f_result);
if (!f_result.hit) {

b_result = broadcast.match();
broadcast.action(b_result);

}

f_result = forward.match();
b_result = broadcast.match();
forward.action(f_result);
if (!f_result.hit) {

broadcast.action(b_result);
}

Fig. 9. Code motion of stateless functions. Since the match function
is stateless without modifying program states, the PDSN compiler moves
broadcast.match outside of the if statement, thus allowing prefetching
the match function and executing the match functions of forward and
broadcast in parallel.

statement becomes !f_result.hit. The PSDN compiler
decomposes the table broadcast in Fig. 2 in the same way.

Fig. 8 describes details of decoupled match and action
function of table forward in Fig. 2. This paper barrows
C++ semantics to describe the match and action functions.
The match function compares keys with given values from
the control plane rules and checks if they are matched or not.
According to the matching result, the match function finds a
corresponding P4 action and its arguments from the control
plane rules. Finally, the match function returns the matching
result (hit or miss), action type, and arguments. Given the
return values from the match function, the action function
decides the desired P4 action with the arguments. Here, since
the PSDN compiler inlines P4 actions into one action function,
the action function includes an if and a switch statement
to select the correct P4 action among inlined actions.

P4 semantics allows custom instructions in the table pipeline
as an apply function. For example, the example code in
Fig. 2 defines an apply function that contains a conditional
branch in Line 30. The PSDN compiler compiles these custom
instructions into separate functions.

C. Dependency Analysis

Dependency analysis of the PSDN compiler follows tradi-
tional data and control dependency analysis [25], [26]. The
PSDN compiler finds data dependencies with use and def
information described in Fig. 5. The PSDN compiler draws

if(f_result.hit) {
switch(f_result.action_id) {

case 1: meta.dst_port =
f_result.args[0]; break;

default: break;
}

}

f_keys = [hdr.ethernet.dstAddr];
f_result = PERFORM_MATCH(

LookupType.exact, f_keys);

forward.match

if (!f_result.hit)

broadcast.match
b_keys = [meta.src_port];
b_result = PERFORM_MATCH(

LookupType.exact, b_keys);

if(b_result.hit) {
switch(b_result.action_id) {

case 1: meta.dst_port =
b_result.args[0]; break;

default: break;
}

}

forward.action broadcast.action
control dependency

f_result.hit

f_result b_result

meta.dst_port

Fig. 10. Program Dependence Graph. A blue arrow is a control dependency,
and black arrows are data dependencies.

a program dependence graph (PDG) by combining data and
control dependencies. Here, the compiler redirects control
dependencies from the table to the action function to prefetch
read-only match functions.

The match functions and some extern functions are state-
less; the functions do neither modify the program’s state nor
depend on the control flow. Fig. 9 describes how the PSDN
compiler manages the stateless functions. Since the match
function only compares keys with control plane rules, the
function only reads variables without modifying its program
state. Some extern functions like register-read and hashing are
also stateless if they do not modify the program state. The
PSDN compiler moves invocations on the stateless functions
outside the conditional branches, thus executing the stateless
functions before the conditional branches. The prefetched ex-
ecution increases parallelization opportunities like the match
functions of forward and broadcast in Fig. 9 and reduces
the execution time after the if statement is taken.

Fig. 10 shows the PDG of an example code in Fig. 2. The
match function and the action function have data dependen-
cies between each other. Also, forward and broadcast
action functions have a data dependency because they modify
the same metadata field (meta.dst_port). if statement
requires f_result.hit and determines the execution of
the broadcast table. The broadcast match function is
stateless and independent from the if statement, so the PSDN
compiler draws the control dependency from the if statement
only to the broadcast action function.

D. Pipeline Scheduling

The PSDN compiler schedules the functions in PDG into
a pipeline. The pipeline scheduler allocates independent func-
tions in the same pipeline stage to reduce the length of the
pipeline. The scheduler first estimates the latencies (clock
cycles) of each function and allocates the functions with a
greedy-based algorithm.

1) Clock Cycle Estimation: Clock cycle estimation of this
work follows Fig. 11. For action functions, non-blocking
assignments (which have no dependency between each other)
take one cycle, and every blocking assignment and conditional

reg2reg1

Non-blocking assignments

Conditions

1cycle

Operators
1cycle

2cycles
1cycle

cycles = # insts - # non-blocking assigns

(a) Action function
cycles = c (fixed)

search key

parallel
search

(b) CAM match function

cycles = 𝛼 log(d)+𝛽

search key

de
pt

h
(d

) find the
longest
match

(c) LPM match function

search key

cycles = 𝛼 log(w) +𝛽 log(d) + 𝛾

width (w)

de
pt

h
(d

)

cell: 0, 1, X

finds the most
similar match

(d) TCAM match function

@maxLatency(n)
extern hash(…);

P4 code

hash

cycles = 2n

PSDN Annotation Parser
black
box

(e) Extern function

Fig. 11. Cycle estimation of functions. Match function of type exact, lpm, ternary uses CAM, LPM, and TCAM match function, respectively.

Algorithm 1: Pipeline scheduling algorithm
Input : A program dependence graph G = (v, e)
Output : A scheduled pipeline P that is a list of pipeline stages
// PRED(v): predecessors of v
// SUCC(v): successors of v
P ← ∅
while G 6= ∅ do

I ← {v | v ∈ G s.t. PRED(v) = ∅ }
N ← ∪v∈ISUCC(v)
R← ∪v∈NPRED(v)
V ← Sort v ∈ I \R in assending order of Latency (v)
for v ∈ V do

if Latency(v) ≤ MaxLatency(R) then
R← R ∪ {v}

else if MaxLatency(R) > MaxLatency(N) then
R← R ∪ {v}

end
end
// ⊕: concatenation operator
P ← P ⊕R
G← G \R

end

sy
nc

er

FM

sy
nc

er

FA

sy
nc

er

BM IF BA

cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FM: forward.match BM: broadcast.match
FA: forward.action BA: broadcast.action IF: if statement

Fig. 12. A scheduled pipeline. Assume that a syncer logic takes one cycle.

statement takes one cycle each. For conditional branches, the
estimator sums up the cycles of the longest branch among
them. Therefore, the estimated latency of the action functions
equals to the number of instructions in the longest branch
minus the number of the non-blocking assignments (Fig. 11a).

The cycles of match functions depend on the types of
match functions. The types of the match functions are exact
match, ternary match, and longest prefix match. The cycle
estimation formulae of match functions depend on their actual
implementations, but this work abstracts the execution models
of the match functions. A match function with type exact
uses a content-addressable memory (CAM) that performs a
parallel search to find an exact match with a key (Fig. 11b).

TABLE I
ESTIMATED CYCLES OF MATCH FUNCTIONS, ASSUMING THAT THE

NUMBER OF ENTRIES d = 256.

Lookup type Estimated cycles

exact 6
lpm 20 (= 2 log(256) + 4)
ternary 2 blog(dw/40e)c+ 6

Therefore, the estimated latency of the CAM-based match
function is constant.

A match function with type lpm performs the longest prefix
match (LPM) with search keys. Calculating the length of the
prefix match is constant but finding the longest length depends
on the number of entries (depth). Finding the longest match
requires multiplexers. Therefore, the estimated latency of the
LPM is a linear function of log(depth) (Fig. 11c).

A match function with type ternary uses a ternary-CAM
(TCAM) module that allows don’t-care terms (X) in entries.
Finding the entries in TCAM depends on its implementation,
but this work assumes that TCAM finds the most similar
match. Therefore, TCAM requires multiplexers on calculating
the match of each entry and finding the most similar match;
the estimated latency is a linear function of log(width) and
log(depth) (Fig. 11d). Table I shows the cycle estimation of
the PSDN compiler uses. The cycle estimation of the match
functions is architecture-specific, and this work uses these
references [27]–[29].

The PSDN compiler considers the extern function as a
black box. Because the compiler does not know the actual
implementation of the extern function, the programmer should
provide information about maximum latency with annotation.
The PSDN compiler parses the annotation and determines the
cycles of the extern function.

The backend FPGA hardware applies different clocks on
action functions and match/extern functions. The clock period
of the match functions and the extern functions is twice longer
than the clock period of the action functions. This work also
reflects the difference in clock periods when estimating the
functions’ cycles.

2) Pipeline Scheduling Algorithm: The pipeline scheduler
allocates functions in PDG to a pipeline. Algorithm 1 describes
the pipeline scheduling algorithm of this work. The algorithm

method update = {
forward_req.key =

ethernet.dstAddr}

method update = {
broadcast_req.key =

src_port }

method update = {
forward_req.key = ethernet.dstAddr;
broadcast_req.key = src_port }

Non-blocking assignments

(a) Merge concurrent action functions in the same pipeline stage

class ForwardAction::TupleEngine(3) {
... class forward_end::Section(3) {…} }

class BroadcastAction::TupleEngine(3) {
class broadcast_start::Section(1) {…} ...}

class ForwardBroadcastAction::TupleEngine(6) {
... class forward_end::Section(3) {…}

class broadcast_start::Section(4) {…} ...}

forward.action_function

broadcast.action_function

Append sections

(b) Concatenate adjacent action functions

Fig. 13. Function fusion examples

first finds the independent functions (I) from the PDG and
finds the next-independent functions (N) whose dependencies
are resolved when allocating the functions in I . Next, the
algorithm finds the required functions (R) necessary to resolve
the dependencies of the functions in N .

The algorithm places all the functions in R in the pipeline
stage and decides where to place the functions in I \ R.
The pipeline stage of the function v ∈ I \ R depends
on latency(v), maxLatency(R), and maxLatency(N). The
scheduler chooses a stage that hides latency(v) between the
current stage (R) and the next stage (N). If latency(v)
is longer than maxLatency(R) and maxLatency(N), the
scheduler chooses the stage that has longer latency. The algo-
rithm repeats these steps until all the functions are allocated
in the pipeline P .

Fig. 12 shows a pipeline allocation of PDG in Fig. 10.
The functions allocated in the same pipeline stages will be
executed in parallel. To synchronize the inputs and outputs
of each pipeline stage, the PSDN compiler inserts a barrier
named syncer between the pipeline stages. A syncer receives
modified data from a previous stage, updates the global packet
header values and metadata, and sends the packet headers and
metadata to the next stage. Since the syncer requires additional
clock cycles, inserting many syncers would increase the laten-
cies and reduce the performance gain from the parallelization.
Therefore, the PSDN compiler introduces the function fusion
scheme to reduce the number of syncers described in the
following section.

E. Function Fusion & Code Generation

To generate a PX program, the PSDN compiler adopts
a similar way as the P4-SDNet compiler [12]. The PSDN
compiler translates instructions in action functions into PX

sy
nc

er

FM

sy
nc

er

FA BA
IF

BM

cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FM: forward.match BM: broadcast.match
FA: forward.action BA: broadcast.action IF: if statement

Fig. 14. A fused pipeline of the original pipeline in Fig. 12. Assume that a
syncer logic takes one cycle.

instructions in tuple engines [13]. A tuple engine of PX
language [13] has multiple sections that contain assignment
statements (update) and a jump operation to the next section
(move to section). The PSDN compiler puts the non-blocking
assignment statements into the same section and translates
conditional statements to the move to section operations.

While the PSDN compiler translates the functions, the
PSDN compiler applies a function fusion scheme on action
functions to reduce latency. First, the PSDN compiler merges
the concurrent functions in the same pipeline stage into one
tuple engine. For example, if the instructions in the action
functions have no dependency between each other, the PSDN
compiler places the instructions into one section and merges
the functions (Fig. 13a). Second, the PSDN compiler concate-
nates an action function and the neighboring action function
into one tuple engine. For example, the compiler places all the
sections in the action functions into one tuple engine, redirects
the move_to_section operation of the last section in the
previous action function (forward_end in Fig. 13b) to
point to the beginning section of the following action function
(broadcast_start section in Fig. 13b), and increases the
number of sections of the concatenated tuple engine. Note
that the function fusion scheme is only applicable to action
functions because match functions cannot be modified, and
extern functions are considered black boxes.

Fig. 14 shows the fused pipeline. The PSDN compiler fuses
the if statement, forward action function, and broadcast
action function into one action function. The function fusion
scheme merges the if statement in the last section of the
forward action function. The compiler translates the if
statement into a jump operation, so the if statement does
not take additional cycles. Then, the function fusion scheme
concatenates forward and broadcast action functions
into one action function. The compiler finally removes the
syncer between the two pipeline stages. Compared to Fig. 12,
the fused pipeline takes a shorter processing time because of
reducing syncers.

IV. EVALUATION

A. Methods

This work evaluates how the PSDN compiler reduces packet
processing latencies and resource utilization by HDL simu-
lation and synthesis with P4 benchmarks from P4-NetFPGA
GitHub [30]. The benchmark suite includes seven P4 pro-
grams: Learning Switch, In-Network Telemetry (INT), TCP

TABLE II
BENCHMARK DESCRIPTIONS AND SPECIFICATIONS. REG(REGISTER),

HASH, AND TIMESTAMP ARE EXTERNS.

Program Description #
table

#
reg

#
hash

time
stamp

Learning Switch learns forwarding
rules from packets 3 0 0 0

INT collects network
states in real-time 1 1 0 1

TCP Monitor monitors TCP
connections 1 2 1 0

Switch Calc. performs basic
arithmetic operations 1 1 0 0

Basic FRED drops packets based
on queing lengths 3 4 0 1

Heavy Hitter finds over-flowed
packets 2 3 0 1

Flow Rate calculates flow
rate of packets 2 7 0 1

Fig. 15. NetFPGA-SUME board for hardware evaluation

Monitor, Switch Calculator, Basic Fair Random Early Detec-
tion (Basic FRED), Heavy Hitter, and Flow Rate. Table II
shows the descriptions and specifications of each program.
Some programs have independent and parallelizable functions,
but the other programs have sequential structures to monitor
and calculate packet information. The parallel or sequential
structures of programs will determine the latency reduction of
the PSDN compiler.

This work measures end-to-end packet processing latency
by HDL simulation with Vivado 2018.2. This work also
synthesizes the compiled programs to measure resource uti-
lization. The testing hardware is a NetFPGA-SUME board [6]
equipped with a Xilinx Vertex-7 FPGA module and four
10 Gbps network ports (Fig. 15).

To show that the PSDN compiler effectively reduces the
packet processing latency and resource utilization of compiled
programs, this work compares the proposed methods with
previous work [12]:

• Previous work: performs table-level pipeline scheduling
and optimizations.

0
20
40
60
80

100
120
140
160
180
200

Learning
Switch

INT TCP
Monitor

Switch
Calc.

Basic
FRED

Heavy
Hitter

Flow Rate

C
lo

ck
 c

yc
le

s

Previous work Pipeline scheduling Pipeline scheduling + Function fus ion

Fig. 16. Packet processing latency. 12.1% reduction in a geometric mean.

Action

ActionMatch

Match Action

Sync

Match

Sy
nc

Action

ActionMatch

Match Action

Match

fwd

bcast

smac

PSDN
Compiler

fwd

bcast

smac

Previous
work

Time ratio (%) 0 32.2 44.4 56.1 67.8 76.7 83.3 100

Sy
nc

Fig. 17. Time ratio of functions in table pipeline of Learning Switch. Blue
and black arrows are control and data dependencies. fwd, bcast, and smac are
forward, broadcast, and smac tables, respectively.

• Pipeline scheduling: performs table decomposition and
function-level pipeline scheduling without applying func-
tion fusion scheme.

• Pipeline scheduling + Function fusion: performs table
decomposition, function-level pipeline scheduling, and
function fusion scheme.

B. Results

Latency: This work measures the end-to-end packet pro-
cessing latency of the compiled programs by HDL simulation.
Fig. 16 shows clock cycles taken by the compiled programs.
Compared to the previous work, the pipeline scheduling with
function fusion reduces the latency by 12.1% in a geometric
mean. Here, function-level pipeline scheduling does not reduce
latencies of TCP Monitor, Basic FRED, and Flow Rate com-
pared to the previous work because the three P4 programs
have less parallelizable functions than the other programs.
For the three programs, table decomposition on every table
increases the number of functions and the pipeline length. By
applying function fusion that merges the adjacent functions,
the compiler reduces the number of action functions and syn-
chronization overheads, exposing performance improvement
of function-level parallelization.

To deeply analyze how the PSDN compiler effectively re-
duces the latency, this work measures the cycles of functions in
the table pipeline of the Learning Switch benchmark compared

0%

5%

10%

15%

20%

25%

INT Learning
Switch

Switch
Calc.

TCP
Monitor

Basic
FRED

Heavy
Hitter

Flow
Rate

U
til

iz
at

io
n

(%
)

Previous work Pipeline scheduling Pipeline scheduling + Function fus ion

(a) LUTs. 3.07% reduction in a geomean.

0%

5%

10%

15%

20%

25%

30%

35%

INT Learning
Switch

Switch
Calc.

TCP
Monitor

Basic
FRED

Heavy
Hitter

Flow
Rate

U
til

iz
at

io
n

(%
)

Previous work Pipeline scheduling Pipeline scheduling + Function fus ion

(b) Registers. 4.29% reduction in a geomean.

0%

10%

20%

30%

40%

50%

INT Learning
Switch

Switch
Calc.

TCP
Monitor

Basic
FRED

Heavy
Hitter

Flow
Rate

U
til

iz
at

io
n

(%
)

Previous work Pipeline scheduling Pipeline scheduling+ Function fusion

(c) Memory. 3.13% reduction in a geomean.

Fig. 18. Resource utilization (lower is better). 3.5% reduction in a geometric
mean.

to the previous work (Fig. 17). The Learning Switch program
has three tables: forward, broadcast, and smac. There exist
a control dependency between forward and broadcast tables
and a data dependency between actions of broadcast and
smac tables. The previous work [12] considers the tables
as execution units, so it sequentially allocates forward and
broadcast tables. Because the previous work considers only
match dependency or action dependency [7], it parallelizes
only the match functions of broadcast and smac tables. On
the other hand, the PSDN compiler decomposes the tables into
match functions and action functions and redirects the control
dependency to action functions to prefetch the read-only match
functions. Therefore, the PDSN compiler can parallelize all the
match functions of the three tables.

Resource utilization: This work measures the resource uti-
lization of the synthesized programs in lookup tables (LUTs;
representing combinational logics, not packet processing ta-
bles), registers, and memory. This work installs the synthe-
sized programs into the NetFPGA-SUME board, which has
Xilinx xc7vx690t FPGA module. Fig. 18 shows the resource
utilization percentage of each unit. Compared to the previous
work, the PSDN compiler reduces resource usage by 3.5% in
a geometric mean.

In Fig. 18a, table decomposition and function-level pipeline
scheduling reduce the usages of combinational logic compared
to the previous work. The table decomposition reduces the
number of conditional branches by placing separate action
functions in parallel, thus reducing the combinational logic
usage. Since the function fusion scheme merges functions
with additional conditional branches, the LUT usage with
the function fusion is slightly higher than the usage without
the function fusion. Though the function function scheme
increases the LUT usage, the PSDN compiler still reduces
the LUT usage by 3.07% in a geometric mean compared to
the previous work.

In terms of the register usage (Fig. 18b), table decomposi-
tion uses more registers than the previous work. A function
needs to transfer all the data to the following functions in a
pipeline, thus consuming registers for its data bits. Although
making more functions increase register usages, by applying
the function fusion scheme on the decomposed pipeline, the
PSDN compiler reduces the register usage by 4.29% in a
geometric mean compared to the previous work.

In Fig. 18c, pipeline scheduling reduces memory (BRAM)
usage compared to the previous work. The memory utilization
is related to the internal synchronization buffers for match
functions and extern functions. By placing the independent
match and extern functions into the same pipeline stage,
pipeline scheduling reduces synchronization buffers. Com-
pared to the previous work, the PSDN compiler reduces the
memory resource usage by 3.13% in a geometric mean.

V. RELATED WORK

Compilers and languages for network packet process-
ing [31]–[33] provide programming tools for writing packet
processing programs and optimize the programs. Aspen [31]
is a language that supports the concurrency of network server
applications. Code reuse on SDN programming [32], [33]
simplifies network programming by providing reusable build-
ing blocks. This work adopts P4 language [2] as a frontend
language, but the proposed parallelization method can be
applied if the language has table pipeline semantics.

Previous work targeting the RISC-based network proces-
sors proposes compiler optimization techniques like register
allocation [34]–[36], bit-level instruction partitioning [37], and
resolving bank conflicts [38]. Although this work does not
target RISC network processors, this work will improve the
performance of the CPU-based multi-core packet processors
with parallelization.

Some studies propose the compilers that optimize packet
parsers [39]–[41]. The packet parser is a part of programmable
data plane, but the parser’s latency is shorter than the table
pipeline. The reason is that the parser only reads packet header
values to identify the protocol types of the packets while the
table pipeline reads and modifies packet header values and
metadata information. The table pipeline is the main bottleneck
of the programmable data plane, so this work optimizes the
pipeline to minimize overall latency.

To increase the throughput of packet processing applica-
tions, researchers have proposed compilers that exploit ap-
plication partitioning algorithms [42]–[44]. The proposed im-
plementations partition imperative packet processing programs
into several basic blocks and make a pipeline to increase the
throughput. This work also proposes the table decomposition
in a similar way but exploits the characteristics of match and
action functions.

Recent work by Jose et al. [11] adopts parallelization to
optimize latency of P4 [2] packet processing applications. Jose
et al. [11] propose a compiler that maps P4 logical tables
into physical tables on packet processing architectures [7], [9].
The proposed compiler exploits a table dependency graph to
find data dependencies and Integer Linear Programming (ILP)
to map logical tables to physical tables. While the compiler
by Jose et al. adopts pipeline scheduling on table-level, the
compiler of this work decouples matches and actions from
the tables and schedules the matches and the actions into the
pipeline in a fine-grained manner.

P4FPGA [10] is a rapid prototyping compiler that trans-
lates P4 programs into Bluespec System Verilog [45], [46]
programs. One of their approaches to reducing latency is co-
locating independent instructions into the same pipeline stage.
This work also performs a similar way in the function fusion
scheme, but the main difference is that P4FPGA does not
consider how to reorder and map the packet processing tables
into the pipeline preserving table-level dependency. In other
words, P4FPGA only supports intra-table optimization, but this
work supports intra- and inter-table optimization.

Previous work on programmable ASIC compilers [47]–[49]
primarily aims to overcome the limitations of chip-specific
language and architecture. Gao et al. [47] leverage domain-
specific synthesis techniques to accelerate compilation and
target multiple backends using a pipeline description language.
To support programming independent of the underlying hard-
ware architecture, µP4 [48] increases the abstraction level in
target-specific packet processing pipelines and configurations.
Lyra [49] provides a one-big-pipeline abstraction to allow
programmers to conveniently express their algorithms and
generates chip-specific codes for distributed switches.

VI. CONCLUSION

This work proposes a new compiler that supports fine-
grained pipeline scheduling and function fusion for network
function programs. Previous compilers conduct packet pro-
cessing table-level analysis and pipeline scheduling, but the

compiler of this work decomposes the tables into subdi-
vided functions and performs fine-grained static analysis and
pipeline scheduling. This work also proposes function fusion
that reduces the number of functions and synchronization
overheads caused by the table decomposition. This work shows
that the proposed schemes reduce packet processing latency
by 12.1% and resource utilization by 3.5% compared to the
previous work.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable
feedback. We also thank the CoreLab members for their
support and feedback during this work. This work is supported
by IITP-2017-0-00195, IITP-2018-0-01392, and IITP-2020-0-
01847 through the Institute of Information and Communica-
tion Technology Planning and Evaluation (IITP) funded by the
Ministry of Science and ICT. Hanjun Kim is the corresponding
author of this paper.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-independent Packet Processors,” SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, Jul. 2014.

[3] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and
J. Rexford, “PISCES: A Programmable, Protocol-Independent Software
Switch,” in Proceedings of the 2016 ACM SIGCOMM Conference, ser.
SIGCOMM ’16. New York, NY, USA: ACM, 2016, pp. 525–538.

[4] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Her-
bert, D. Ahern, and D. Miller, “The eXpress Data Path: Fast Pro-
grammable Packet Processing in the Operating System Kernel,” in Pro-
ceedings of the 14th International Conference on Emerging Networking
EXperiments and Technologies, ser. CoNEXT ’18. New York, NY,
USA: ACM, 2018, pp. 54–66.

[5] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The Design and Implementation of Open vSwitch,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15), Oakland, CA, May 2015, pp. 117–130.

[6] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“NetFPGA SUME: Toward 100 Gbps as Research Commodity,” IEEE
Micro, vol. 34, no. 5, pp. 32–41, Sep. 2014.

[7] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding Metamorphosis: Fast
Programmable Match-action Processing in Hardware for SDN,” in
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
ser. SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 99–110.

[8] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and
T. Edsall, “dRMT: Disaggregated Programmable Switching,” in Pro-
ceedings of the Conference of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM ’17. New York, NY, USA: ACM,
2017, pp. 1–14.

[9] R. Ozdag, “Intel® Ethernet Switch FM6000 Series-Software Defined
Networking,” Intel Cooperation, 2012.

[10] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster,
and H. Weatherspoon, “P4FPGA: A Rapid Prototyping Framework for
P4,” in Proceedings of the Symposium on SDN Research, ser. SOSR ’17.
New York, NY, USA: ACM, 2017, pp. 122–135.

[11] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling Packet
Programs to Reconfigurable Switches,” in 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15). Oakland,
CA: USENIX Association, May 2015, pp. 103–115.

[12] Xilinx, “P4-SDNet User Guide,” https : / /www.xilinx .com/support /
documentation/sw manuals/xilinx2018 2/ug1252-p4-sdnet.pdf, 2018.

[13] G. Brebner and W. Jiang, “High-Speed Packet Processing using Recon-
figurable Computing,” IEEE Micro, vol. 34, no. 1, pp. 8–18, Jan 2014.

[14] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The P4-
>NetFPGA Workflow for Line-Rate Packet Processing,” in Proceed-
ings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’19. New York, NY, USA:
ACM, 2019, pp. 1–9.

[15] Open Networking Foundation, “Software-Defined Networking: The New
Norm for Networks,” ONF White Paper, April 2012.

[16] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an Open, Distributed SDN OS,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 1–6.

[17] J. Hyun, N. Van Tu, and J. W. Hong, “Towards knowledge-defined
networking using in-band network telemetry,” in NOMS 2018 - 2018
IEEE/IFIP Network Operations and Management Symposium, April
2018, pp. 1–7.

[18] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
Stateful Layer-4 Load Balancing Fast and Cheap Using Switching
ASICs,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’17. New York, NY,
USA: ACM, 2017, pp. 15–28.

[19] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-
Network Computation is a Dumb Idea Whose Time Has Come,” in
Proceedings of the 16th ACM Workshop on Hot Topics in Networks, ser.
HotNets-XVI. New York, NY, USA: ACM, 2017, pp. 150–156.

[20] H. Song, “Protocol-oblivious Forwarding: Unleash the Power of SDN
Through a Future-proof Forwarding Plane,” in Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp.
127–132.

[21] S. Li, D. Hu, W. Fang, S. Ma, C. Chen, H. Huang, and Z. Zhu,
“Protocol Oblivious Forwarding (POF): Software-Defined Networking
with Enhanced Programmability,” IEEE Network, vol. 31, no. 2, pp.
58–66, March 2017.

[22] H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford,
R. Soulé, and H. Weatherspoon, “Whippersnapper: A P4 Language
Benchmark Suite,” in Proceedings of the Symposium on SDN Research,
ser. SOSR ’17. New York, NY, USA: ACM, 2017, pp. 95–101.

[23] Barefoot, “P4 16 reference compiler,” https://github.com/p4lang/p4c,
2020.

[24] Xilinx, “SDNet Packet Processor User Guide,” https : / / www .
xilinx . com / support / documentation / sw manuals / xilinx2018 2 /
ug1012-sdnet-packet-processor.pdf, 2018.

[25] R. Cytron, J. Ferrante, and V. Sarkar, “Compact representations for con-
trol dependence,” in Proceedings of the ACM SIGPLAN 1990 Conference
on Programming Language Design and Implementation, ser. PLDI ’90.
New York, NY, USA: ACM, 1990, pp. 337–351.

[26] W. Pugh, “The omega test: A fast and practical integer program-
ming algorithm for dependence analysis,” in Proceedings of the 1991
ACM/IEEE Conference on Supercomputing, ser. Supercomputing ’91.
New York, NY, USA: ACM, 1991, pp. 4–13.

[27] Xilinx, “Exact Match Binary CAM Search IP for SDNet,” https://www.
xilinx.com/support/documentation/ip documentation/cam/pg189-cam.
pdf, 2019.

[28] ——, “Ternary Content Addressable Memory (TCAM) Search IP
for SDNet,” https : / / www. xilinx . com / support / documentation / ip
documentation/tcam/pg190-tcam.pdf, 2017.

[29] ——, “Longest Prefix Match (LPM) Search IP for SDNet,” https://www.
xilinx.com/support/documentation/ip documentation/lpm/pg191-lpm.
pdf, 2017.

[30] NetFPGA Github Organization, “P4-NetFPGA-public,” https://github.
com/NetFPGA/P4-NetFPGA-public, 2018.

[31] G. Upadhyaya, V. S. Pai, and S. P. Midkiff, “Expressing and Exploiting
Concurrency in Networked Applications with Aspen,” in Proceedings
of the 12th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, ser. PPoPP ’07. New York, NY, USA: ACM,
2007, pp. 13–23.

[32] H. Eran, L. Zeno, Z. Istvn, and M. Silberstein, “Design Patterns for Code
Reuse in HLS Packet Processing Pipelines,” in 2019 IEEE 27th Annual

International Symposium on Field-Programmable Custom Computing
Machines (FCCM), April 2019, pp. 208–217.

[33] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple: Simpli-
fying SDN Programming Using Algorithmic Policies,” in Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM, ser. SIGCOMM
’13. New York, NY, USA: ACM, 2013, pp. 87–98.

[34] J. Wagner and R. Leupers, “C Compiler Design for an Industrial
Network Processor,” in Proceedings of the ACM SIGPLAN Workshop
on Languages, Compilers and Tools for Embedded Systems, ser. LCTES
’01. New York, NY, USA: ACM, 2001, pp. 155–164.

[35] J. Kim, S. Jung, Y. Paek, and G.-R. Uh, “Experience with a Retargetable
Compiler for a Commercial Network Processor,” in Proceedings of
the 2002 International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, ser. CASES ’02. New York, NY,
USA: ACM, 2002, pp. 178–187.

[36] L. George and M. Blume, “Taming the IXP Network Processor,” in
Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, ser. PLDI ’03. New York, NY,
USA: ACM, 2003, pp. 26–37.

[37] S. Carr and P. Sweany, “Automatic Data Partitioning for the Agere Pay-
load Plus Network Processor,” in Proceedings of the 2004 International
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, ser. CASES ’04. New York, NY, USA: ACM, 2004, pp.
238–247.

[38] X. Zhuang and Santosh Pande, “Resolving register bank conflicts for a
network processor,” in 2003 12th International Conference on Parallel
Architectures and Compilation Techniques, Sep. 2003, pp. 269–278.

[39] J. Santiago da Silva, F.-R. Boyer, and J. P. Langlois, “P4-Compatible
High-Level Synthesis of Low Latency 100 Gb/s Streaming Packet
Parsers in FPGAs,” in Proceedings of the 2018 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, ser. FPGA ’18.
New York, NY, USA: ACM, 2018, pp. 147–152.

[40] P. Bencek, V. Pu, and H. Kubtov, “P4-to-VHDL: Automatic Generation
of 100 Gbps Packet Parsers,” in 2016 IEEE 24th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), May 2016, pp. 148–155.

[41] A. Yazdinejad, A. Bohlooli, and K. Jamshidi, “P4 to SDNet: Automatic
Generation of an Efficient Protocol-Independent Packet Parser on Recon-
figurable Hardware,” in 2018 8th International Conference on Computer
and Knowledge Engineering (ICCKE), Oct 2018, pp. 159–164.

[42] J. Dai, B. Huang, L. Li, and L. Harrison, “Automatically Partitioning
Packet Processing Applications for Pipelined Architectures,” in Proceed-
ings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’05. New York, NY, USA: ACM,
2005, pp. 237–248.

[43] M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and R. Ju,
“Shangri-La: Achieving High Performance from Compiled Network
Applications While Enabling Ease of Programming,” in Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’05. New York, NY, USA: ACM, 2005,
pp. 224–236.

[44] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Bal-
akrishnan, G. Varghese, N. McKeown, and S. Licking, “Packet Transac-
tions: High-Level Programming for Line-Rate Switches,” in Proceedings
of the 2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16. New
York, NY, USA: ACM, 2016, pp. 15–28.

[45] R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high
level specifications,” in Proceedings. Second ACM and IEEE Interna-
tional Conference on Formal Methods and Models for Co-Design, 2004.
MEMOCODE ’04., June 2004, pp. 69–70.

[46] R. S. Nikhil, Bluespec: A General-Purpose Approach to High-Level
Synthesis Based on Parallel Atomic Transactions. Dordrecht: Springer
Netherlands, 2008, pp. 129–146.

[47] X. Gao, T. Kim, M. D. Wong, D. Raghunathan, A. K. Varma, P. G.
Kannan, A. Sivaraman, S. Narayana, and A. Gupta, “Switch code
generation using program synthesis,” in Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for
Computer Communication, ser. SIGCOMM ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 4461.

[48] H. Soni, M. Rifai, P. Kumar, R. Doenges, and N. Foster, “Composing
dataplane programs with µP4,” in Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1252-p4-sdnet.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1252-p4-sdnet.pdf
https://github.com/p4lang/p4c
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1012-sdnet-packet-processor.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1012-sdnet-packet-processor.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1012-sdnet-packet-processor.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cam/pg189-cam.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cam/pg189-cam.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cam/pg189-cam.pdf
https://www.xilinx.com/support/documentation/ip_documentation/tcam/pg190-tcam.pdf
https://www.xilinx.com/support/documentation/ip_documentation/tcam/pg190-tcam.pdf
https://www.xilinx.com/support/documentation/ip_documentation/lpm/pg191-lpm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/lpm/pg191-lpm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/lpm/pg191-lpm.pdf
https://github.com/NetFPGA/P4-NetFPGA-public
https://github.com/NetFPGA/P4-NetFPGA-public

Communication, ser. SIGCOMM ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 329343.

[49] J. Gao, E. Zhai, H. H. Liu, R. Miao, Y. Zhou, B. Tian, C. Sun, D. Cai,
M. Zhang, and M. Yu, “Lyra: A cross-platform language and compiler
for data plane programming on heterogeneous asics,” in Proceedings

of the Annual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Architectures,
and Protocols for Computer Communication, ser. SIGCOMM ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
435450.

	Introduction
	Background & Motivation
	Software-Defined Networking
	Structure of Data Plane Language
	Limitation of Existing Compilers

	PSDN Compiler Design & Implementation
	Overview of Compilation Process
	Table Decomposition
	Dependency Analysis
	Pipeline Scheduling
	Clock Cycle Estimation
	Pipeline Scheduling Algorithm

	Function Fusion & Code Generation

	Evaluation
	Methods
	Results

	Related Work
	Conclusion
	References

