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ABSTRACT

Automatic parallelization for clusters is a promising afigive to
time-consuming, error-prone manual parallelization. ldeer, au-
tomatic parallelization is frequently limited by the impigion of
static analysis. Moreover, due to the inherent fragilitgtaftic anal-
ysis, small changes to the source code can significantlyraride
performance. By replacing static analysis with specufediod pro-
filing, automatic parallelization becomes more robust guuliea-
ble. A naive automatic speculative parallelization dogsnale for
distributed memory clusters, due to the high bandwidth iredito
validate speculation. This work is the first automatic sjpeore
DOALL (Spec-DOALL) parallelization system for clusters. ewW
have implemented a prototype automatic parallelizatiostesy,
called Cluster Spec-DOALL, which consists of a Spec-DOALL
parallelizing compiler and a speculative runtime for chust Since
the compiler optimizes communication patterns, and théme
is optimized for the cases in which speculation succeedsstéi
Spec-DOALL minimizes the communication and validationreve
heads of the speculative runtime. Across 8 benchmarks tetlus
Spec-DOALL achieves a geomean speedup of 43081 a 120-
core cluster, whereas DOALL without speculation achievely o

sumers. Second, clusters have high inter-node commumrickzt
tency. Without careful communication optimization, theeirnode
communication cost easily becomes a performance bott#tenec

There are two main strategies for scalable, efficient palizdition
on clusters: parallel programming methods and automatialpa
lelization methods. Explicit parallel programming usingnassage
passing protocol (e.g., MPI) is one potential solution e pinob-
lem, but it can severely limit the programmer’s producyiity re-
quiring a deep knowledge of concurrency, domain expertsé,
platform-specific performance tuning. Parallelizationi&\Buch as
Cluster OpenMP [7] can help programmers parallelize settplen
programs on clusters. As the programmers annotate whatand h
to parallelize the sequential programs, the compiler geasrpar-
allel codes. However, the programmers still need to anatlyee
data and control dependences of the program to find effeptive
allelization strategies.

Automatic parallelization research has a rich historyeeigly in
the scientific computing community. Automatic paralleligicom-
pilers such as SUIF [1, 19] and Polaris [3] parallelize a sedjal

4.5x speedup. This demonstrates that speculation makes sealabl program without programmer’s intervention. These cormpibei-

fully-automatic parallelization for clusters possible.

1. INTRODUCTION

Clusters of commodity servers and switches are the mosti@opu
form of large-scale parallel computers to speed up the ¢xecaf
programs that require large computation power. While ehsspro-
vide scalable hardware resources such as processor ca&esrm
and 1/0 bandwidth, programs need to be parallelized to effity
utilize these parallel hardware resources. As a resulstets are
primarily used for scientific programs or web services, \tdon-
sist of units of work that are mostly independent.

However, extracting scalable parallelism from sequeptiagrams
on clusters is challenging for two main reasons. First, confity
clusters do not provide shared memory. This requires thal-par
lelizer (programmer or compiler) to identify shared datd explic-
itly insert communication primitives between producersl aon-
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tomatically find loops that can be parallelized using statialy-
ses, and transform the loops for parallel execution. Howékeir
applicability has been limited mostly to array-based ddfierap-
plications that have well-analyzable, regular data acpasterns
mainly because of imprecise static analysis. Moreovesalnaly-
sis is too fragile to achieve stable performance with sntainges
in the source code. More sophisticated, robust memory dispree
analysis can mitigate this problem, but there are still mapgli-
cations that are hard to parallelize automatically inalgdihose
with memory accesses through pointers or indirect arraysy-i
procedural dependences, and so on.

Automatic speculative parallelization [11, 13, 16, 20, &&h over-
come the limitations of static compiler analysis. These gibm
ers speculatively remove memory or control dependences@mo
instructions, and optimistically parallelize loops. Hmee these
proposals assume the availability of specialized hardeecache-
coherent shared memory, and their scalability has not beerod-
strated beyond 8 cores.

This paper is the first to demonstrate automatic speculBt@AaLL
(Spec-DOALL) parallelization for clusters, addressing throb-
lems of limited applicability and lack of performance staiai We
have implemented a prototype automatic parallelizatiostesy,
called Cluster Spec-DOALL, by combining a Spec-DOALL com-
piler with a speculative runtime system.



The Cluster Spec-DOALL compiler automatically identifie@BLL-
able or speculatively DOALL-able loops in a program via dymna
profiling runs and static dependence analysis at compile-tiThe
compiler speculatively removes data and control deperegetiat
prevent parallelization of the loops, guided by a set of i
A code generator transforms the loop and inserts commuaoicat
primitives for flow dependences across parallel contextEom-
munication optimizer aggressively promotes and batchesmo
nication calls in inner loops to reduce the amount of comicami
tion from worker processes to the validation and commit esses,
which easily become a performance bottleneck on clusters.

The parallelized programs are executed on top of the Cl&gec-
DOALL runtime system. As the program is executed, the Cluste
Spec-DOALL runtime checks if misspeculation occurs. If acsp
ulatively removed dependence manifests at run-time, thsted
Spec-DOALL runtime rolls back to a previous non-specukfivo-
gram state, executes the misspeculated iteration seqlignéind
resumes speculative parallel execution of the followiegations.

The primary contributions of this paper are:

e The first fully-automatic speculative parallelization &ya
targeting commodity clusters (called Cluster Spec-DOALL)

e Highly effective communication optimizations which reéuc
the communication and validation overhead, enabling scal-
able performance for clusters

e An in-depth evaluation of Cluster Spec-DOALL on a 120-
core cluster using 13 benchmarks from PolyBench and PAR-
SEC benchmark suites

2. BACKGROUND AND MOTIVATION

Automatic parallelization has achieved limited succespanal-
lelizing sequential programs mainly because of impreaig:feag-
ile static analysis. Section 2.1 identifies the limitatiamfscon-
ventional analysis-based approaches to automatic péatien.
Section 2.2 motivates speculative parallelization to cesre these
limitations and communication optimization to achievelabke per-
formance.

2.1 Analysis-based Approaches in Automatic

Parallelization
Automatic parallelization is an ideal solution which frggegram-
mers from difficulties of parallel programming and platfespecific
performance tuning. Parallelizing compilers can autocaditi par-
allelize affine loops [1, 3].Loop_A in Figure 1 shows such an
example code. If a compiler proves that all memory variables
the body of the functiori oo do not alias the arrayegul ar via
inter-procedural analysis, the loop is parallelized. Efene, the
utility of an automatic parallelizing compiler is largelgtgrmined
by the quality of its memory dependence analysis.

1: Loop_A: 5: Loop_B:

2: for (int 1i=0; 1i<N; i++) 6: for (int i=0; i<N; i++) {

3: regular[i] += foo(i); 7 irregular([idx[i]] += foo(i);

4: 8: if (irregular([idx[i]] > error)
9 printf(“I/0 operation!”);
10: }

Figure 1: Sequential Code with Two Loops
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test code to check the value bfat run-time to select either a se-
quential or parallel version of the loop accordingly. Hoeethe
coverage of these techniques is mostly restricted to thescaken

a predicate can be extracted outside the analyzed loop amw a |
cost run-time test can be generated [18]. They cannot beealppl
to Loop_Bin Figure 1, for example, where an index array is used
to access the arrayr r egul ar and a simple predicate cannot be
extracted outside the loop to test the condition within the loop
body.

Another issue with automatic parallelization is the fragibf static

analysis. Figure 2 illustrates how fragile static analgsis be with
a small change in the program. In this example, the autorpatic
allelizer can easily parallelize the unmodified PolyBenemdh-

marks [15] using static arrays. However, if we replace thict
arrays with dynamically allocated arrays, it not only sggses
some of the optimizations previously applied but also béquéral-

lelization for several benchmarks since heap objects arergly

more difficult to analyze. This leads to run-time perfornmeaticat

is highly sensitive to the implementation style.

Therefore, analysis-based approaches, both static arhignare
not sufficient for parallelization of even array-based agpions,

let alone pointer-based ones, having irregular memorysseseand
complex control flows. Moreover, recursive data structuhs

namic memory allocation, and frequent accesses to shariathhees

pose additional challenges. Imprecise, fragile statidyaigmhas
severely limited the applicability of conventional autdiogaral-

lelization.

2.2 Spec-DOALL Parallelization on Clusters

In some cases, static analysis may be imprecise. For example A viable strategy to overcome the limitations of static gei is

within the functionf oo, assume that there is a read from or write
to the array elementegul ar[i +M , (and the size of the array
is greater than\i+N)), whereMis an input from the user. In this
casel oop_Amay not be DOALL-able depending on the value of
M If Mis greater tham\, the loop is DOALL-able; otherwise, it is
not. Some research compilers such as SUIF [1] and Polaris3]3,
integrate low-cost run-time analysis capabilities to ihgesmall

to exploit optimistic parallelism via data and control sgletion.

For example, the compiler can apply Spec-DOALL parall¢iora

to Loop_B in Figure 1, speculating that no cross-iteration depen-
dence violation occurs via concurrent array accesses atdité
error condition in Line 8 does not happen at run-time. This ap
proach requires runtime support for misspeculation dietecnd
recovery in either hardware or software to ensure corrgstne



System Fully Supports Requires Targets Number of Cores
Automatic | Spec-DOALL | HW Support | Clusters | Used for Evaluation
Cluster OpenMP [7] No No No Yes -
SUIF [1] Yes No No Yes 32
Polaris [3, 18] Yes No No No 8, 16
POSH [11] Yes Yes Yes No 4
STMilite [13] Yes Yes No No 8
Cluster Spec-DOALL [This paper Yes Yes No Yes 120
Table 1: Comparison of automatic parallelization systems
Runtime support for speculative parallelism has been avesatea Sequential
H P Code Inputs
of research, and there are a number of proposals inCludBITEAC- & @S c oD e o e e e e e e e e e e = RIS
tional Memories (TM) and Thread Level Speculation (TLS) mem szlers N
ory systems. The runtime system tracks every speculativa-me Control Fiow Object Lifetime
ory operation within a transaction or task (i.e., region ofl€ ex- ‘ Profiler H Memory Profiler Profiler

ecuted speculatively) to determine if any atomicity vimat (in
TM) or dependence violation (in TLS) occurs at commit timeo-P
posals for TM or TLS memory systems can be divided into two
classes: hardware-based approaches [21, 24, 23] and snitnky
approaches [4, 6, 8, 9, 12, 13, 14, 17, 22]. Software-only ap-
proaches can be further divided depending on whether thygyree
cache-coherent shared memory or not. Most existing prépéma
software-only speculative runtimes target only smallesshared-
memory computers with tens of cores at most [13, 14, 17, 22].

There are research compilers which parallelize applinatigsing
speculation [11, 13, 16, 25]. However, these compilersrassu
the availability of specialized hardware or cache-cohestared
memory, and their performance is evaluated using a smalbeum
of cores (typically fewer than 8). Software transactionamory
systems have suffered from large validation overhead [&jse-
quently they may not scale to a large number of cores. To aehie
scalable performance on a large number of cores, it is drtwia
optimize communication because the commit bandwidthyhsi
comes a performance bottleneck.

There have been proposals for TM and TLS memory systems on

clusters [4, 6, 8, 9, 12], but only Cluster-STM [4] and DSMT¥ [
have demonstrated their scalability on platforms with &\@ cores.
In addition, among the proposals, there is no known auta@mati
speculative parallelization system targeting them. @uSpec-
DOALL is the first fully-automatic speculative paralleltzan sys-
tem that scales to hundreds of cores without requiring harew
support or cache-coherent shared memory. Table 1 compgases t
work with other existing automatic parallelization system

3. OVERVIEW OF Cluster Spec-DOALL

Figure 3 illustrates the overall structure of the ClustesSPOALL
system. Cluster Spec-DOALL consists of a parallelizing piben
including a set of profilers and a runtime supporting spamga
execution. The compiler finds and parallelizes DOALL-abte o
Spec-DOALL-able loops by using both static alias analystdy-
namic profiling results. The runtime executes these péirdid
loops safely and efficiently on clusters.

3.1 Cluster Spec-DOALL Compiler

The Cluster Spec-DOALL compiler takes sequential C/C++s®u
code as input to generate parallelized code targeting thetésl
Spec-DOALL runtime. The compiler framework is composed of
the following components: dependence analyzer, DOALL Ipara
lelizer, speculator, Spec-DOALL parallelizer and comneation
optimizer. The rest of this section briefly explains the fiomal-

ity of each component, which will be discussed in greateaitiat
Section 4.
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Figure 3: Overall Cluster Spec-DOALL System

Profilers: The profilers gather dynamic information by execut-
ing the sequential code with training input sets. More djmztly,
Cluster Spec-DOALL uses three profiles: control flow profiem-
ory dependence profile and object lifetime profile. The sfatou
uses these profiling results to target control and data sému

Dependence Analyzer: The dependence analyzer creates a pro-
gram dependence graph (PDG) via static analysis, whichdes|
both data and control dependences. Since the Cluster Spat-D
runtime employs private memory space for each worker psyces
loop-carried anti- and output-dependences are ignordtkiparal-

lel region. Although the compiler exploits profiling infoation to
further refine the program dependence structure, bettiér atzal-
ysis is always helpful to generate more efficient parallelesowith
fewer speculated dependences leading to lower validatish ¢

DOALL Parallelizer: Whenever applicable, the compiler paral-
lelizes a loop without speculation using the classical DQAans-
formation. Specifically, loops without loop-carried degence can
be parallelized with DOALL. The DOALL parallelizer adds sl
to the Cluster Spec-DOALL runtime for process management, a
live-in and live-out handling.

Speculator: When DOALL parallelization is not applicable, the
compiler uses profiling information to speculatively rera@epen-
dence edges from the PDG. The refined PDG is céigelc-PDG
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The Spec-PDG is fed into the Spec-DOALL parallelizer forape
lative parallelization.

Spec-DOALL Parallelizer: If there is no loop-carried dependence
in the Spec-PDG, the Spec-DOALL parallelizer transfornesgé-
quential loop for parallel execution as the DOALL paraltelidoes.
Additionally, the Spec-DOALL parallelizer inserts rungnfunc-
tion calls to detect and recover misspeculated executivmlsb
generates recovery code to re-execute a misspeculatadiater
which is invoked after rolling back to the correct programtet

Communication Optimizer: It is important to reduce the amount
of communication since clusters have high communicatiost.co
For live-out and speculated memory accesses, the comntignica
optimizer aggressively attempts to hoist them out of innepk by
promotion and batching.

3.2 Cluster Spec-DOALL Runtime

The parallelized loops with DOALL and Spec-DOALL are exe-
cuted on the Cluster Spec-DOALL runtime, which supportsspe
ulative memory accesses, misspeculation detection aravenc
live-in and live-out handling, and process management. disa
tributed transactional memory system, the runtime vadislabem-
ory speculation, and manages rollbacks in the event of missp
lation. To efficiently pass live-in values on a cluster, thatime
adopts copy-on-access [8]. Section 5 presents more defaie
runtime.

4. Cluster Spec-DOALL COMPILER

The Cluster Spec-DOALL compiler parallelizes sequentifg-€+

source code with the following components: dependenceyaeal
DOALL parallelizer, speculator, Spec-DOALL parallelizezcov-
ery code generator, and communication optimizer. This@ede-

scribes each component in detail.

4.1 Speculator

The speculator removes dependence edges from the PDG ¢hat ar
unlikely to manifest at run-time, to produce a Spec-PDG. fhinee
types of speculation supported by Cluster Spec-DOALL islegdi

by three different profilers as follows:

Control Speculation: A profiler for control speculation collects
the traversal count of every edge in the control flow graph.each
control flow edge, it computes the ratio of the number of tities
edge is taken to total loop iterations. When this ratio islemthan

a static threshold, the speculator marks that edgpesulatedand

all basic blocks which are dominated by that control flow edge
speculatively deadControl speculation does not require any inter-
node communication except for misspeculation recoverg;lss-
ter Spec-DOALL preferentially applies control speculataver the
other forms of speculation.

Loop A:
// Master Process
beginInvocation (DOALL) ;

// Worker Process
beginInvocation (DOALL) ;

producelivelns () ; consumeLivelns () ;
consumeLiveOuts () ; for (int i=0; i<N; 1i++) {
endInvocation () ; 1f (1$NP==tid) {

regular[i]+=foo(1i);
produce (&regular[i]);
bl
endInvocation () ;

Figure 6: DOALL (Loop_A)

Memory Flow Speculation: Memory flow speculation relies on a
memory profiler which observes the flow of values from stoces t
loads. This information is stronger than alias informati@mtause
two memory operations may alias even when there is no flow be-
tween them. The speculator identifies loop-carried memany fl
dependences which occur less frequently than a statichibicks
and marks them aspeculatedInter-node communication must be
inserted to detect a memory flow misspeculation at run-tisee,
memory flow speculation has higher overhead than contrauspe
lation.

Object Lifetime Speculation: Object lifetime speculation is guided
by a profiler to identify dynamic objects which are privateatsin-
gle loop iteration. The profiler reports allocation sitesost ob-
ject is not freed in the same iteration of a loop, and dealiona
sites whose object is not allocated in the same iterationlatés to
iteration-private objects are independent across itaratiand are
not live-out of the loop, reducing the amount of inter-nodeenu-
nication. Specialized versionswél | oc andf r ee automatically
test for misspeculation without inter-node communication

Figure 4 shows a PDG with profiling results for the exampleecod
in Figure 1, where the node number corresponds to the lindbatum
Since the value afdx[ i ] isirregular, static alias analysis conser-
vatively inserts a loop-carried memory dependencenode 7.
Since /0O operations must be executed in program order, @ loo
carried self-dependence exists made 9. Figure 5 shows how
the speculator generates a Spec-PDG by speculatively ieghov
loop-carried dependences based on the profiling resultgimd-4.
According to the profiles, the branch fromode 8 to node 9
never occurs during profiling, hence the control speculatarks
node 9 as speculatively removed. The loop-carried memory de-
pendence onode 7 rarely occurs, so the memory speculator also
removes that dependence.

4.2 DOALL Parallelizer

The DOALL transform is applied whenever a loop can be paral-
lelized non-speculatively. For examplegop_A in Figure 1 can
be parallelized with DOALL assuming that static alias asey
proves the absence of loop-carried dependences. Figurewésh
how the DOALL parallelizer transforms the example code ig-Fi
ure 1. The loop is wrapped by calls begi nl nvocati on and
endl nvocat i on, which initialize and finalize the runtime li-
brary for parallel execution. Register live-ins are exgictrans-
ferred using inter-node communication queues. Memory-ifige
are handled transparently by the copy-on-access mechamism
vided by the Cluster Spec-DOALL runtime. Register and mgmor
live-outs are also transferred explicitly via inter-nodgrenunica-
tion queues.
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Loop_B:

// Master Process // Worker Process executeForLoop () {
beginInvocation (Spec-DOALL) ; beginInvocation (Spec-DOALL) ; for(int i=0; i<N; i++) {
producelivelns () ; consumeLivelns () ; header:
commitProcess (recoveryFcn) ; executeForLoop () ; if (TXBoundary () ==isMisspec)
consumeLiveOuts () ; return; goto recoveryBB;
endInvocation () ; if (1%NP==tid) {

recoveryBB: storelV (idx i, 1i);
recoveryFcn: waitRuntimeRecoverMemory () ; specLoad (&irregular[idx[i]]);
recoveryFen () { i = loadLV(idx i); irregular[idx[i]]+=foo (i)

int i=loadLV(idx 1i);

irregular[idx[i]]+=foo (1) ;

if (irregular[idx[i]]>error)
printf (“I/0 operation”);

it++;

storelLV (idx i, 1i);

goto header;

Figure 7: Spec-DOALL (Loop_B)

4.3 Spec-DOALL Parallelizer

Algorithm 1: Spec-DOALL Parallelizer

Data: loopis a target loopspecLoopPDGs PDG with speculation
information
Result generate a speculatively parallelized loop
let header= getLoopHeader(loop)
DOALLTransform(loop)
let recoveryBB-= insertRecoveryBBJ)
insertfrai t Runt i neRecover Menor y, recoveryBB)
foreach Iv € loop_carried_local_variableslo
insert( oadLV, getLVIdx(lv), Iv, recoveryBB)
let newLV=insert(st or eLV, getLVIdx(lv), header)
end
let isMisspec= insert(TXBoundar y, header),
insert(“i f (i sSM sspec) goto recoveryBB’, header);
foreach BasicBlock exitBB= LoopExitBBsdo
let isMisspec=insertendl nvocat i on, exitBB);
insert(“i f (i sM sspec) goto recoveryBB’, exitBB);

end

foreach branchinfoe getControlSpeculated(specLoopPD&)
let branch= getBranchinst(branchinfo)

let branchOutBB= getUnlikelyBranchedBB(branchinfo)
let misspecBB- createBB()

redirectControl(branch, branchOutBB, misspecBB)
insert(ri sspec, misspecBB)

insert(‘got o r ecover yBB", misspecBB)
removeBBs(getDominatedBBs(branch, branchOutBB))
end

foreach edgec getMemorySpeculated(specLoopP D)

let Storelnst st getSrcinst(edge)

let LoadInst Id= getDstInst(edge)

insertcpeclLoad, getPointerAddr(ld), before(ld))
insertcpecSt or e, getPointerAddr(st), after(st))

end

If DOALL is not applicable, but there is no loop-carried dape
dence in theSpec-PDGthe Spec-DOALL parallelizer transforms
the sequential loop to speculatively parallelized code.e dht-
put must include codes to detect and recover misspeculaesiie
tion. Figure 7 shows how the Spec-DOALL parallelizer transfs
Loop_Bfrom Figure 1.

Algorithm 1 shows a procedure that performs this transfoiona
The Spec-DOALL parallelizer begins by transforming theuseg
tial loop in the same way as the DOALL parallelizer (Line 2).
then creates a basic block nanmrezt over BB (Lines 3—4). If con-
trol reaches the recovery block, the process begins locpacu-
lation recovery.

specStore (&irregular([idx[i]]);

if (irregular[idx[i]] > error) {
misspec();
goto recoveryBB;
Pyl
if (endInvocation () ==isMisspec)

goto recoveryBB;

}

Lines 9-14 isolate each loop iteration as a separate tramsdy
inserting calls toT XBoundar y at the loop header and every loop
exit. These check whether the master process has sent aeglissp
ulation signal. If so, they initiate local recovery by braimg to
recovery code. Since other workers may misspeculate dfter t
worker finishes its executiorendl nvocat i on blocks until all
workers finish parallel execution.

Lines 5-8 insert codes to support recovery in the case opmiss
lation. Calls tost or eLVandl oadLV pass local variables in each
transaction for the runtime to restore locals in the evemtispec-
ulation. It handles only loop-carried local variables; esthocal
variables are either unchanged or unused across iteratindsdo
not need recovery support.

For control speculation, lines 15-23 redirect speculataddhes to
misspecBBFor memory speculation, lines 24—29 instrument rele-
vant memory operations by insertisgeclLoad andspecSt or e
calls. These calls collect a transaction log, which is usgdhk
runtime system to detect misspeculation.

4.4 Recovery Code Generator

If misspeculation occurs, all the following speculativer#tions
must be squashed, and the misspeculated iteration showdd-be
ecuted again honoring the semantics of the original progréine
misspeculated iteration will be executed on the masterga®with
the committed program state. The Cluster Spec-DOALL coanpil
creates a recovery function which performs one iteratiorhef
loop. The compiler redirects back edges to a loop exit bloakxt
ecute the recovery code only for the misspeculated iterafio re-
store register state, the Cluster Spec-DOALL compilerrisssode
to restore local variables.

4.5 Communication Optimization

When scaling transactional memories to a large number @ascor
the limited commit bandwidth becomes a bottleneck for theleh
system. In many programs, memory operations within inngpso
of a parallelized loop claim the largest portion of the corrimaind-
width to handle live-out and speculative memory accesseseT
duce the amount of communication generated by the innes|oop
the Cluster Spec-DOALL compiler performs two optimizason
promotion and batching.

When validating a memory access in a speculative iteratiom,
validator usespecSt or e to reflect the memory update to the
validator's memory version, argbecLoad to check if the mem-
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ory access reads the correct version. Within a single tciiose

multiple accesses to the same address cause redundant nemmu

cation; only the first load from and the last store to that edsaf-
fect validation. Exploiting this, the communication promichoists
loads from and stores to a loop-invariant address out ofrtheri
loop to the loop preheader and loop exits, respectivelyikdrmon-

ventional store/load promotion, this optimization is insiive to

the existence of other instructions that may overwrite wae the
same address, because only the first load and the last sthie @i
transaction matter for validation. Similarly, callspo oduce for

live-outs can be moved to the inner loop’s exits.

The service bandwidth is limited not only by the communimati

volume in bytes but also by the number of messages. Batching

is an optimization which gathers dense reads from or writes t

chunk of memory into a single jumbo read or write. The batcher

is applicable to memory operations in a counted inner loopsgh
pointer operands are induction variables of that loop. fHiapble,
it removes the calls tepecSt or e (specLoad) from the inner
loop, and places calls gpec St or eRange (specLoadRange)
after (before) the inner loop. In this way, the Cluster SP€2ALL
runtime can deliver the same number of bytes in fewer messdge
batched function call may be further promoted higher in ploest
in a way analogous to the promotion of a speculative loadarest
In other words, batching not only reduces the number of ngessa
but also exposes hidden opportunities for communicatidimiga-
tion by transforming loop-varianspecSt or e and specLoad
into loop-invariantspec St or eRange andspeclLoadRange.

5. Cluster Spec-DOALL RUNTIME SYSTEM
The Cluster Spec-DOALL runtime executes parallelized sosyp-
porting speculative memory accesses, misspeculationtémteand
recovery, live-in and live-out handling, and process manaent.
This section describes how the runtime executes the pkzatie
loops and detects misspeculation.

5.1 The Execution Model

The Cluster Spec-DOALL runtime orchestrates the execution
parallel codes generated by the Cluster Spec-DOALL compite
clusters. To exploit parallel hardware for misspeculatietection
and recovery, the Cluster Spec-DOALL runtime offloads trsk ta

of validating speculative memory accesses to a separategsp
calledvalidator process, and keeps the committed, non-speculative
memory state in the master process as in [8].

Figure 8 shows how the Cluster Spec-DOALL runtime interacts
with a Spec-DOALL loop. When a parallel region starts, thesma

ter process should pass all live-in values to the worker ggses
because only the master process keeps the entire non-apezul
program state. A conservative approach can be to broadtast a
memory pages that are potentially live-in, but this wouldpbe-
hibitively expensive. Instead, the Cluster Spec-DOALL time
addresses this using a lazy, copy-on-access (CoA) schehieh w
delivers live-in memory pages on demand as in [8]. Each worke
installs a custom page fault handler. Whenever a workergssc
attempts to access a live-in memory address which has nbeget
transferred to the worker’'s memory space, a page fault edoer
cause the address has not been mapped yet. Then the page fault
handler contacts the master process to retrieve a copy qfape

being accessed, maps a new page at the same base address in the
worker's address space, and copies the contents of thewedri

page.

Worker processes execute each iteration independentby pass
the address, size, and value of both live-out memory statspec-
ulative load and store to the validator process as they éxehe
parallel loop. Once the validator verifies the correctnésdl spec-
ulative memory accesses, all live-out values are commiittectthe
master process. When the execution of the parallel loop is fin
ished, sequential execution resumes in the master pro&asse

all live-out values are passed from the worker processd®etmas-

ter process, the master process can immediately starttegtive
following sequential region without extra communication.

If a misspeculation is detected, the recovery procedurinbeas
shown in Figure 9. The master process sends a misspecuigion
nal to all workers. The workers unmap all pages which they re-
ceived via the copy-on-access mechanism. The master griieas
executes a single misspeculated iteration of the paraitgd With

its non-speculative memory state. Register values whiehiae
across loop iterations are communicated to the worker psas
and these processes receive a signal from the master ptoaess
sume parallel execution. The workers recover their workiregn-

ory state via the copy-on-access mechanism.

5.2 Misspeculation Detection

The Cluster Spec-DOALL runtime extends conventional ifiated
TM systems [4, 8, 9, 12] to support three types of speculafidre
Cluster Spec-DOALL runtime supports memory flow specutatio
via memory versioning, control speculation by allowing fhve-
gram to explicitly trigger misspeculation recovery, angeablife-
time speculation by tracking memory allocations and dealions.

When memory speculation is employed, one process is dedicat
as a validator process. The validator tracks memory aceessd
checks memory versions. When a transaction (i.e., singta-it
tion) is finished without misspeculation, the validatornfards all
speculated stores to the master process which keeps theittechm
program state.

The Cluster Spec-DOALL runtime exposesrasspec function
interface to invoke a recovery process from control missfation.
The Cluster Spec-DOALL compiler inserts calls to this fuoict
along all speculated control flow edges. If a speculatedrobnt



flow occurs at run-time, the current and following transacsi will
be squashed and rolled back for non-speculative re-executi

Object lifetime speculation is applied to allocation andltiEation
sites whose object is likely to be private to one iteratiothefloop.
The Cluster Spec-DOALL compiler replaces callsva | oc and
f r ee with specMal | oc andspecFr ee. The runtime system
records a list of speculatively local objects that have lzlecated.
When a transaction terminates, the runtime system checkthamh
the list is empty. If any speculatively local object was neeid
by the end of the transaction, misspeculation is signalede that
this additional bookkeeping occurs locally at each workedey
so inter-node communication is unnecessary to detect pustp
tion. Speculatively local objects are allocated in the ggvmem-
ory space of each worker and considered thread-local, redoe-
ing overhead for validation and live-out communication.

6. EVALUATION

Cluster Spec-DOALL is evaluated on a 120-core cluster (ko

x 12 cores). Each node has two Intel 6-core Westmere X5650 pro-
cessors running at 2.67 GHz with 48 GB of memory. It runs 64-bi
RedHat Enterprise Linux v5. The inter-node communicatioh |

is Mellanox ConnectX Infiniband x4 QDR. OpenMPI (v1.4.1 with
gcec v4.1.2, -02) is used as the underlying communicatioerlay
The Cluster Spec-DOALL compiler builds on the LLVM compiler
infrastructure [10].

Cluster Spec-DOALL is evaluated with benchmarks from Poly-
Bench [15] and PARSEC [2] written in C as listed in Table 2. To
use different inputs for profiling and evaluation, and toegtca
problem size from the command line, we changed staticallby al
cated fixed size arrays to dynamically allocated varialde arrays

in the PolyBench benchmarks. Forapt i ons, we removed con-
trol predicated I/O operations from a callee of the hottesplbe-
cause inter-procedural control speculation is not yet émnted.
Memory and object lifetime speculations are inter-procatu

The sequential programs are profiled less than one minutepnot
filing inputs. The evaluation inputs are chosen for the oagse-
quential programs to run longer than one hour to observeoperf
mance scalability on a large number of cores. Five benchsnark
from PolyBench are not used for evaluation because thetuexe
tion time is too short to be parallelized even with large irgets.

6.1 Parallelization Statistics and Results

Table 2 shows how many dependences are speculated in eath ben
mark. Although speculation is not necessary to manuallylpar
lelize PolyBench benchmarks, Cluster Spec-DOALL emplpgcs
ulation to avoid relying on strong static alias analysis.i/Elus-

ter Spec-DOALL can parallelize benchmarks suct2am 3mm

j acobi - 2d- i nper ,andsei del without any speculation, it re-
quires speculation for the other benchmarks.

bl ackschol es, an option-pricing program from PARSEC, re-
quires control speculation if it is compiled with error ckieg en-
abled. The hottest loop prints error messages if a computed p
is different from its reference price. The print operatidocks
DOALL parallelization, but profile results show that it rrec-
curs. Cluster Spec-DOALL speculates that the print cooditwill
not occur, and parallelizes the loop with Spec-DOALL.

Cluster Spec-DOALL parallelizes many loopsiwapt i ons with
memory speculation. In addition, Cluster Spec-DOALL apgpli

object lifetime speculation foswapt i ons unlike other bench-
marks. The outermost loop allocates and frees objects wivieh
only for one iteration. Using object lifetime profile infoation,
Cluster Spec-DOALL speculates that the allocated memopyiis
vate to each iteration.

Figure 10 shows the program speedup. Base is the executien ti
of the original sequential program. In this graph, the runtal
axis shows the number of cores, and the vertical axis sholls fu
application speedups. All execution times were averaged fxe
runs. The evaluated benchmarks are categorized into twpgr@&
scalable benchmarks and 5 slowdown benchmarks.

6.2 The Eight Scalable Benchmarks

Cluster Spec-DOALL achieves scalable performance on thal8 s
able benchmarks due to a synergistic combination of thregyde
choices.

First,speculation makes scalable fully-automatic parallelizabn
possible. Static analysis can always be better, but it is never good
enough. Imprecision of static analysis limits classicabmatic
parallelization. Figure 12 shows performance speedups2tn 1
cores for DOALL parallelization with only static analysi€Jus-

ter Spec-DOALL, and DOALL parallelization with the aid of an
oracle for dependence analysis. Speculation allows thepitem

to parallelize outer loops in some programs that DOALL fails
parallelize, and leads to 43x8geomean performance speedup for
8 scalable programs, while non-speculative DOALL paraiéel
tion achieves only 4.5 geomean performance speedup. Cluster
Spec-DOALL achieves speedup within 7% of the maximum oracle
speedup, 46.A4.

Secondcommunication optimization realizes the scalability po-
tential in Cluster Spec-DOALL. Some programs have high ratio
of memory accesses to computation. For example, eachidterat
in 2mm a matrix multiplication benchmark, requires two loads and
one store to execute only one floating-point multiplicatiorhis
high rate of memory accesses requires a large amount of commu
nication, degrading performance. When applicable baseth®n
communication pattern, Cluster Spec-DOALL optimizes camm
nication by promoting and batching communication functaiis
such agpr oduce, specLoad andspecSt or e. Table 2 shows
the number of optimized function calls and over 99% of the com
munication is optimized away. Small input sets are usedHisr t
result because the unoptimized versions explode exectitian

In addition, Cluster Spec-DOALL privatizes dynamicallyoghted
memory objects if the objects are speculated to be iterdtical.

Its performance impact is evaluated ussgapt i on benchmark

and two versions of the runtime with and without privatimation

12 cores. A small input set is used because the execution time
explodes without privatization. With privatization, thelume of
communication in bytes decreases by 99.6%, and the penfmena
speedup increases from & 1o 3.8x.

Third, static analysis and a separate commit process reduces
validation overhead. Software transactional memory systems have
suffered from large validation overhead [5]. Table 2 shdvesvali-
dation overhead measured by comparing performance speéatup
Spec-DOALL programs with and without validation on 120 core
Exceptl u, there is no significant performance difference. It is be-
cause the task of validation is effectively offloaded to aasete
process to overlap validation with computation in the wonieo-



Benchmark Benchmark Loopys- P’lized Losogoesc_ Speculation (’:gverage of Cgr&?nﬂg;;iaglr?n validation

Suite Total P’llizable | DOALL DOALL Mem Ctrl P’llized Loops P T B [ Reduction Overhead
2mm PolyBench 20 14 7 0 0 0 >99.99% 0 9 99.76% NA
3mm PolyBench 27 20 10 0 0 0 >99.99% 0 13 99.76% NA
correlation PolyBench 13 8 4 1 1 0 >99.99% 3 2 99.01% 3.62%
covariance PolyBench 11 7 3 1 1 0 >99.99% 1 3 99.13% 6.87%
doitgen PolyBench 18 14 4 1 1 0 >99.99% 1 7 99.03% 29.85%
gemm PolyBench 13 8 3 1 1 0 >99.99% 0 6 99.81% 1.85%
gramschmidt PolyBench 10 5 2 1 2 0 99.97% 1 1 18.10% 34.79%
jacobi-2d-imper | PolyBench 9 6 3 0 0 0 >99.99% 0 4 24.01% NA
lu PolyBench 8 5 1 2 5 0 99.96% 2 4 45.79% 2194.14%
ludcmp PolyBench 12 4 1 2 7 0 99.96% 4 3 34.63% 66.49%
seidel PolyBench 7 2 1 0 0 0 0.04% 0 1 33.26% NA
blackscholes PARSEC 5 2 0 1 0 1 >99.99% 1 0 99.99% NA
swaptions PARSEC 87 57 8 16 36 0 >99.99% 5 13 2.41% 8.24%

Table 2: Benchmark Details: Total and P’llizable show the numbers of loops in each benchmark and loops which Cluster Spec
DOALL can parallelize. DOALL and Spec-DOALL show the number of loops which Cluster Spec-DOALL acutally parallelizes.
The P’llized loops number can be different from P’llizable because nested loops are not parallelized if their outer loojs parallelized.
Mem and Ctrl show the number of memory flows and control flow edg speculations. Coverage shows execution time ratio of
parallelized loops over the entire program. In communicaton optimization, P and B stand for the number of Promoted and Etched
function calls, and reduction stands for the percent redudbn in inter-process communication in bytes.

cesses. However, as shownl in, once the validation cost exceeds
a certain threshold relative to the execution time of a ldemtion,
the validation process becomes a performance bottleneloéreT
fore, it is still important to reduce the amount of specukatinem-
ory accesses.

6.3 The Five Slowdown Benchmarks

There are five benchmarks that experience slowddwnl udcnp,
granschmi dt, j acobi - 2d- i nper, andsei del . Based on
quantitative bottleneck analysis, these benchmarks wigedi into
two classes.

For the first class, which is exemplified Isei del , the perfor-
mance speedup is limited by Amdahl’'s Law. As shown in Table 2,
the parallelized loop accounts for a very small fractionhaf &n-
tire program execution because only an initialization li®par-
allelized. The hottest loop cannot be parallelized profjtadven
speculatively, because of frequent loop-carried data rigeces.
To parallelizesei del , other parallelization techniques need to be
applied. In other words, DOALL and Spec-DOALL parallelipat

is not suitable for this kind of programs.

For the second class of benchmarks suchrasnschni dt , | u,

| udcnp, andj acobi - 2d- i nper, inter-node communication
bandwidth limits performance. Figure 13 explains why tHeesech-
marks suffer slowdown, showing their communication baruitlvi
after communication optimization. Since outermost loopthese
benchmarks have frequent loop-carried data dependendes; C
ter Spec-DOALL parallelizes their inner loops, so they assl
amenable to communication optimization than the other lbenc
marks. As a result, they require many hundreds of megabwes p
second of communication bandwidth for misspeculation kimeg
which is orders of magnitude greater than that of the othaclpe
marks. The high communication bandwidth explains why these
benchmarks show performance slowdown even with oracle/anal
sis.

6.4 Misspeculation Analysis

Figure 11 shows how different misspeculation rates afteetger-
formance speedup dil ackschol es on different numbers of
cores. The input files are modified to cause misspeculatiom wi

varying rates from 0.01% to 0.64%. The other benchmarks are
not evaluated because they do not have input-dependerpeuiss
ulation. Higher misspeculation rate and more cores geydesd

to greater performance penalties. The misspeculatiorheaeris
more sensitive to the misspeculation rate than the numbeores
because additional misspeculation causes a new recovera-op
tion while synchronization overhead from additional cdeegver-
lapped with the existing one. Due to the high recovery ovadhe
the Cluster Spec-DOALL compiler should speculate depereen
only with high confidence to achieve good parallel perforogan

7. RELATED WORK

Automatic Parallelization System for Clusters Intel's Cluster
OpenMP [7] extends OpenMP, a parallel programming API for
shared-memory multiprocessors, to clusters with disteithumem-

ory systems. Although the Cluster OpenMP compiler tramsfor
sequential programs to parallel codes automatically, naragners
are still required to specify what and how to parallelizenthsith
programmer annotations. SUIF [1, 19] parallelizes a setiplen
program without any programmer annotation. However, the ap
plicability of SUIF is limited to array-based scientific digations,

and SUIF relies on programmer hints to decompose shared data
across multiple nodes on a cluster [1]. In contrast, CluSimzc-
DOALL does not require any programmer annotation for shared
data since the Cluster Spec-DOALL runtime handles this ogy€
on-access and unified virtual address space, effectivdigdplat-
form details.

Techniques to Overcome the Limitations of Static Compiler
Analysis: Rus et al. proposes Hybrid Analysis (HA) which exploits
runtime support for dependence analysis in staticallytemeinate
cases [18]. Although their system potentially improves dpgli-
cability of automatic parallelization, heavyweight rumé analy-
sis can slow down program execution significantly sinceethsr
no overlap between the analysis and the execution phasés. Li
Cluster Spec-DOALL, STMlite [13] is a speculative pardiiat
tion system for loop parallelization, which consists of atoaatic
parallelizing compiler and a low-cost software transawiorun-
time. However, both the HA system and STMlite are impleménte
and evaluated on small-scale shared-memory machines vaitid 4
8 cores, respectively, and their scalability with a largenbar of
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Figure 13: Communication bandwidth

cores has not been demonstrated. Cluster Spec-DOALL makes8. CONCLUSION
fewer assumptions on the target memory system, hence inis ge Cluster Spec-DOALL is the first fully automatic Spec-DOAL&rp
erally more applicable than these two systems. The POSH com- allelization system for clusters. Cluster Spec-DOALL opties

piler [11] is capable of automatically parallelizing corayl general-
purpose programs, but it requires TLS hardware supporgehin
cannot be used on a commodity cluster.

Speculative Runtime Systems for Clusters The required run-

communication and validation to improve scalability onstérs.

For 8 scalable benchmarks out of 13 PolyBench and PARSEMbenc
marks, Cluster Spec-DOALL achieves a geomean speedup®£43.
over the original sequential programs on a 120-core clustereas
DOALL-only parallelization achieves only 45geomean speedup.

time support from Cluster Spec-DOALL can be easily provided This speedup is within 7% of the maximum oracle speedup,>46.4

by existing transactional runtime systems for clusterse Tluster
Spec-DOALL runtime is inspired by DSMTX [8] and STMilite [13]
to have a separate commit process.
tive pipeline parallelism as well as speculative DOALL plalésm

on clusters but there is ho known automatic parallelizinggiter
targeting DSMTX. Distributed Multiversioning (DMV) [12] odi-
fies a software distributed shared memory system to supams-t
actions at the page granularity. Like the Cluster Spec-DDAL
runtime, the DMV runtime handles decomposition of share@ da
across different nodes without programmer hints. CIUSIEM [4]

is a software TM (STM) system for large-scale clusters. telus
STM uses special memory allocation functions sucktas al | oc,
stmall _al | oc,andst m free, so programmers and compil-
ers should replace the memory allocation function callshtzsé
provided by Cluster-STM. DiSTM [9] is a distributed STM syst
on Java Remote Method Invocation (RMI).

DSMTX supports specula-9.  ACKNOWLEDGMENTS
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